These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38772695)

  • 41. Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures.
    Li P; Song A; Hao J; Wang X
    Soft Matter; 2022 May; 18(20):3856-3866. PubMed ID: 35531597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supramolecular "Step Polymerization" of Preassembled Micelles: A Study of "Polymerization" Kinetics.
    Yang C; Ma X; Lin J; Wang L; Lu Y; Zhang L; Cai C; Gao L
    Macromol Rapid Commun; 2018 Mar; 39(5):. PubMed ID: 29210499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature.
    Olsén P; Undin J; Odelius K; Keul H; Albertsson AC
    Biomacromolecules; 2016 Dec; 17(12):3995-4002. PubMed ID: 27783494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical fuel-driven living and transient supramolecular polymerization.
    Jain A; Dhiman S; Dhayani A; Vemula PK; George SJ
    Nat Commun; 2019 Jan; 10(1):450. PubMed ID: 30683874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-equilibrium dissipative supramolecular materials with a tunable lifetime.
    Tena-Solsona M; Rieß B; Grötsch RK; Löhrer FC; Wanzke C; Käsdorf B; Bausch AR; Müller-Buschbaum P; Lieleg O; Boekhoven J
    Nat Commun; 2017 Jul; 8():15895. PubMed ID: 28719591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Programmable Transient Supramolecular Chiral G-quadruplex Hydrogels by a Chemically Fueled Non-equilibrium Self-Assembly Strategy.
    Xie XQ; Zhang Y; Liang Y; Wang M; Cui Y; Li J; Liu CS
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202114471. PubMed ID: 34927378
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach.
    Zhao T; Wang Z; Yang Y; Liu K; Wang X
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33169-33179. PubMed ID: 37402443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical Fuel Mediated Self-Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher.
    Li M; Ma Z; Pan C; Zhang X; Zhang W; Yang B; Li Y
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100878. PubMed ID: 35080275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle.
    Valera JS; López-Acosta Á; Hermans TM
    Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202406931. PubMed ID: 38770670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Macrocycle-Based Solid-State Supramolecular Polymers.
    Hua B; Shao L; Li M; Liang H; Huang F
    Acc Chem Res; 2022 Apr; 55(7):1025-1034. PubMed ID: 35321546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonequilibrium Catalytic Supramolecular Assemblies of Melamine- and Imidazole-Based Dynamic Building Blocks.
    Afrose SP; Mahato C; Sharma P; Roy L; Das D
    J Am Chem Soc; 2022 Jan; 144(2):673-678. PubMed ID: 34990140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supramolecular Polymerization Controlled through Kinetic Trapping.
    Chen H; Huang Z; Wu H; Xu JF; Zhang X
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16575-16578. PubMed ID: 29119651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct Participation of Solvent Molecules in the Formation of Supramolecular Polymers.
    Ghosh G; Chakraborty A; Pal P; Jana B; Ghosh S
    Chemistry; 2022 Jul; 28(39):e202201082. PubMed ID: 35475531
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transient dormant monomer states for supramolecular polymers with low dispersity.
    Jalani K; Das AD; Sasmal R; Agasti SS; George SJ
    Nat Commun; 2020 Aug; 11(1):3967. PubMed ID: 32770122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multivalence cooperativity leading to "all-or-nothing" assembly: the case of nucleation-growth in supramolecular polymers.
    Lopez-Fontal E; Milanesi L; Tomas S
    Chem Sci; 2016 Jul; 7(7):4468-4475. PubMed ID: 30009001
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery.
    Gao M; Yang Y; Bergfel A; Huang L; Zheng L; Bowden TM
    J Nanobiotechnology; 2020 Jan; 18(1):13. PubMed ID: 31941501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions.
    Cabello-Garcia J; Bae W; Stan GV; Ouldridge TE
    ACS Nano; 2021 Feb; 15(2):3272-3283. PubMed ID: 33470806
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-equilibrium steady states in supramolecular polymerization.
    Sorrenti A; Leira-Iglesias J; Sato A; Hermans TM
    Nat Commun; 2017 Jun; 8():15899. PubMed ID: 28627512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Supramolecular Chirality in Azobenzene-Containing Polymer System: Traditional Postpolymerization Self-Assembly Versus In Situ Supramolecular Self-Assembly Strategy.
    Cheng X; Miao T; Qian Y; Zhang Z; Zhang W; Zhu X
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.