BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38772877)

  • 1. 4-Quinolinylhydrazone analogues kill Leishmania (Leishmania) amazonensis by inducing apoptosis and mitochondria-dependent pathway cell death.
    Granato JDT; Silva ETD; Lemos ASO; Machado PA; Midlej VDV; Antinarelli LMR; Silva Neto AFD; Souza MVN; Coimbra ES
    Chem Biol Drug Des; 2024 May; 103(5):e14535. PubMed ID: 38772877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp.
    Calixto SL; Glanzmann N; Xavier Silveira MM; da Trindade Granato J; Gorza Scopel KK; Torres de Aguiar T; DaMatta RA; Macedo GC; da Silva AD; Coimbra ES
    Chem Biol Interact; 2018 Sep; 293():141-151. PubMed ID: 30098941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis.
    Soyer TG; Mendonça DVC; Tavares GSV; Lage DP; Dias DS; Ribeiro PAF; Perin L; Ludolf F; Coelho VTS; Ferreira ACG; Neves PHAS; Matos GF; Chávez-Fumagalli MA; Coimbra ES; Pereira GR; Coelho EAF; Antinarelli LMR
    Exp Parasitol; 2019 Apr; 199():30-37. PubMed ID: 30817917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antileishmanial activity of a 4-hydrazinoquinoline derivative: Induction of autophagy and apoptosis-related processes and effectiveness in experimental cutaneous leishmaniasis.
    Antinarelli LMR; de Oliveira Souza I; Zabala Capriles PV; Gameiro J; Britta EA; Nakamura CV; Lima WP; da Silva AD; Coimbra ES
    Exp Parasitol; 2018 Dec; 195():78-86. PubMed ID: 30385267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species.
    Tavares GSV; Mendonça DVC; Lage DP; Granato JDT; Ottoni FM; Ludolf F; Chávez-Fumagalli MA; Duarte MC; Tavares CAP; Alves RJ; Coimbra ES; Coelho EAF
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):236-246. PubMed ID: 29481714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis.
    Meinel RS; Almeida ADC; Stroppa PHF; Glanzmann N; Coimbra ES; da Silva AD
    Chem Biol Interact; 2020 Jan; 315():108850. PubMed ID: 31634447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis.
    Antinarelli LM; Souza IO; Glanzmann N; Almeida AD; Porcino GN; Vasconcelos EG; da Silva AD; Coimbra ES
    Exp Parasitol; 2016 Dec; 171():10-16. PubMed ID: 27743972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species.
    Tavares GSV; Mendonça DVC; Lage DP; Antinarelli LMR; Soyer TG; Senna AJS; Matos GF; Dias DS; Ribeiro PAF; Batista JPT; Poletto JM; Brandão GC; Chávez-Fumagalli MA; Pereira GR; Coimbra ES; Coelho EAF
    Acta Trop; 2019 Mar; 191():29-37. PubMed ID: 30586571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solidagenone acts on promastigotes of L. amazonensis by inducing apoptosis-like processes on intracellular amastigotes by IL-12p70/ROS/NO pathway activation.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Contato VM; Silva TF; de Matos RLN; Detoni MB; Rodrigues ACJ; Carloto AC; Lazarin DB; Arakawa NS; Costa IN; Conchon-Costa I; Miranda-Sapla MM; Wowk PF; Pavanelli WR
    Phytomedicine; 2021 May; 85():153536. PubMed ID: 33765552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity.
    Bortoleti BTDS; Gonçalves MD; Tomiotto-Pellissier F; Miranda-Sapla MM; Assolini JP; Carloto ACM; de Carvalho PGC; Cardoso ILA; Simão ANC; Arakawa NS; Costa IN; Conchon-Costa I; Pavanelli WR
    Phytomedicine; 2018 Jul; 46():11-20. PubMed ID: 30097110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species.
    Mendonça DVC; Lage DP; Calixto SL; Ottoni FM; Tavares GSV; Ludolf F; Chávez-Fumagalli MA; Schneider MS; Duarte MC; Tavares CAP; Alves RJ; Coimbra ES; Coelho EAF
    Parasitol Res; 2018 Feb; 117(2):391-403. PubMed ID: 29248978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis.
    Glanzmann N; Antinarelli LMR; da Costa Nunes IK; Pereira HMG; Coelho EAF; Coimbra ES; da Silva AD
    Biomed Pharmacother; 2021 Sep; 141():111857. PubMed ID: 34323702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis.
    Stroppa PHF; Antinarelli LMR; Carmo AML; Gameiro J; Coimbra ES; da Silva AD
    Bioorg Med Chem; 2017 Jun; 25(12):3034-3045. PubMed ID: 28433512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semicarbazone derivatives as promising therapeutic alternatives in leishmaniasis.
    Cavalcanti de Queiroz A; Alves MA; Barreiro EJ; Lima LM; Alexandre-Moreira MS
    Exp Parasitol; 2019 Jun; 201():57-66. PubMed ID: 31004571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis.
    Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S
    Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct Leishmania species by multitarget action in the parasites.
    Antinarelli LMR; Meinel RS; Coelho EAF; da Silva AD; Coimbra ES
    J Pharm Pharmacol; 2019 Dec; 71(12):1854-1863. PubMed ID: 31595530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo activity of a palladacycle complex on Leishmania (Leishmania) amazonensis.
    Paladi Cde S; Pimentel IA; Katz S; Cunha RL; Judice WA; Caires AC; Barbiéri CL
    PLoS Negl Trop Dis; 2012; 6(5):e1626. PubMed ID: 22616018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis.
    Costa Duarte M; dos Reis Lage LM; Lage DP; Mesquita JT; Salles BC; Lavorato SN; Menezes-Souza D; Roatt BM; Alves RJ; Tavares CA; Tempone AG; Coelho EA
    Vet Parasitol; 2016 Feb; 217():81-8. PubMed ID: 26827866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C5 induces different cell death pathways in promastigotes of Leishmania amazonensis.
    Mendes EA; Desoti VC; Silva Sde O; Ueda-Nakamura T; Dias Filho BP; Yamada-Ogatta SF; Sarragiotto MH; Nakamura CV
    Chem Biol Interact; 2016 Aug; 256():16-24. PubMed ID: 27317947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of a Binuclear Cyclopalladated Compound Therapy for Cutaneous Leishmaniasis in the Murine Model of Infection with Leishmania amazonensis and Its Inhibitory Effect on Topoisomerase 1B.
    Velásquez AMA; Ribeiro WC; Venn V; Castelli S; Camargo MS; de Assis RP; de Souza RA; Ribeiro AR; Passalacqua TG; da Rosa JA; Baviera AM; Mauro AE; Desideri A; Almeida-Amaral EE; Graminha MAS
    Antimicrob Agents Chemother; 2017 Aug; 61(8):. PubMed ID: 28507113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.