These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38772902)

  • 1. Transplantation of alveolar macrophages improves the efficacy of endothelial progenitor cell therapy in mouse model of bronchopulmonary dysplasia.
    Mohammed AN; Kohram F; Lan YW; Li E; Kolesnichenko OA; Kalin TV; Kalinichenko VV
    Am J Physiol Lung Cell Mol Physiol; 2024 Jul; 327(1):L114-L125. PubMed ID: 38772902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial progenitor cells derived from embryonic stem cells prevent alveolar simplification in a murine model of bronchopulmonary dysplasia.
    Kolesnichenko OA; Flood HM; Zhang Y; Ustiyan V; Cuervo Jimenez HK; Kalin TV; Kalinichenko VV
    Front Cell Dev Biol; 2023; 11():1209518. PubMed ID: 37363726
    [No Abstract]   [Full Text] [Related]  

  • 3. Impaired Autophagic Activity Contributes to the Pathogenesis of Bronchopulmonary Dysplasia. Evidence from Murine and Baboon Models.
    Zhang L; Soni S; Hekimoglu E; Berkelhamer S; Çataltepe S
    Am J Respir Cell Mol Biol; 2020 Sep; 63(3):338-348. PubMed ID: 32374619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fresh Noncultured Endothelial Progenitor Cells Improve Neonatal Lung Hyperoxia-Induced Alveolar Injury.
    Firsova AB; Bird AD; Abebe D; Ng J; Mollard R; Cole TJ
    Stem Cells Transl Med; 2017 Dec; 6(12):2094-2105. PubMed ID: 29027762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resident alveolar macrophages are master regulators of arrested alveolarization in experimental bronchopulmonary dysplasia.
    Kalymbetova TV; Selvakumar B; Rodríguez-Castillo JA; Gunjak M; Malainou C; Heindl MR; Moiseenko A; Chao CM; Vadász I; Mayer K; Lohmeyer J; Bellusci S; Böttcher-Friebertshäuser E; Seeger W; Herold S; Morty RE
    J Pathol; 2018 Jun; 245(2):153-159. PubMed ID: 29574785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
    Sammour I; Somashekar S; Huang J; Batlahally S; Breton M; Valasaki K; Khan A; Wu S; Young KC
    PLoS One; 2016; 11(10):e0164269. PubMed ID: 27711256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Alleviate Lung Injury in Rat Model of Bronchopulmonary Dysplasia by Affecting Cell Survival and Angiogenesis.
    You J; Zhou O; Liu J; Zou W; Zhang L; Tian D; Dai J; Luo Z; Liu E; Fu Z; Zou L
    Stem Cells Dev; 2020 Dec; 29(23):1520-1532. PubMed ID: 33040709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice.
    Eldredge LC; Treuting PM; Manicone AM; Ziegler SF; Parks WC; McGuire JK
    Am J Respir Cell Mol Biol; 2016 Feb; 54(2):273-83. PubMed ID: 26192732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases.
    Kolesnichenko OA; Whitsett JA; Kalin TV; Kalinichenko VV
    Am J Respir Cell Mol Biol; 2021 Nov; 65(5):473-488. PubMed ID: 34293272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia.
    Balasubramaniam V; Mervis CF; Maxey AM; Markham NE; Abman SH
    Am J Physiol Lung Cell Mol Physiol; 2007 May; 292(5):L1073-84. PubMed ID: 17209139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathepsin S deficiency confers protection from neonatal hyperoxia-induced lung injury.
    Hirakawa H; Pierce RA; Bingol-Karakoc G; Karaaslan C; Weng M; Shi GP; Saad A; Weber E; Mariani TJ; Starcher B; Shapiro SD; Cataltepe S
    Am J Respir Crit Care Med; 2007 Oct; 176(8):778-85. PubMed ID: 17673697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMPK-driven Macrophage Responses Are Autophagy Dependent in Experimental Bronchopulmonary Dysplasia.
    Soni S; Jiang Y; Zhang L; Thakur A; Cataltepe S
    Am J Respir Cell Mol Biol; 2023 Mar; 68(3):279-287. PubMed ID: 36306501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Regulatory-Associated Protein of Mechanistic Target of Rapamycin Prevents Hyperoxia-Induced Lung Injury by Enhancing Autophagy and Reducing Apoptosis in Neonatal Mice.
    Sureshbabu A; Syed M; Das P; Janér C; Pryhuber G; Rahman A; Andersson S; Homer RJ; Bhandari V
    Am J Respir Cell Mol Biol; 2016 Nov; 55(5):722-735. PubMed ID: 27374190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tie-2 Cre-Mediated Deficiency of Extracellular Signal-Regulated Kinase 2 Potentiates Experimental Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension in Neonatal Mice.
    Menon RT; Shrestha AK; Barrios R; Reynolds C; Shivanna B
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Continuous Positive Airway Pressure in a Mouse Model of Hyperoxic Neonatal Lung Injury.
    Reyburn B; Di Fiore JM; Raffay T; Martin RJ; Prakash YS; Jafri A; MacFarlane PM
    Neonatology; 2016; 109(1):6-13. PubMed ID: 26394387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-tracheal administration of a naked plasmid expressing stromal derived factor-1 improves lung structure in rodents with experimental bronchopulmonary dysplasia.
    Guerra K; Bryan C; Dapaah-Siakwan F; Sammour I; Drummond S; Zambrano R; Chen P; Huang J; Sharma M; Shrager S; Benny M; Wu S; Young KC
    Respir Res; 2019 Nov; 20(1):255. PubMed ID: 31718614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
    Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K
    Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role and mechanism of epithelial-mesenchymal transition in a rat model of bronchopulmonary dysplasia induced by hyperoxia exposure].
    Lin YT; Yan CB; Hong WC; Cai C; Gong XH
    Zhongguo Dang Dai Er Ke Za Zhi; 2024 Jul; 26(7):765-773. PubMed ID: 39014955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Effects of Bone Marrow-derived Versus Umbilical Cord Tissue Mesenchymal Stem Cells in an Experimental Model of Bronchopulmonary Dysplasia.
    Benny M; Courchia B; Shrager S; Sharma M; Chen P; Duara J; Valasaki K; Bellio MA; Damianos A; Huang J; Zambrano R; Schmidt A; Wu S; Velazquez OC; Hare JM; Khan A; Young KC
    Stem Cells Transl Med; 2022 Mar; 11(2):189-199. PubMed ID: 35298658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia.
    Chetty A; Bennett M; Dang L; Nakamura D; Cao GJ; Mujahid S; Volpe M; Herman I; Becerra SP; Nielsen HC
    Am J Respir Cell Mol Biol; 2015 Mar; 52(3):295-303. PubMed ID: 25054647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.