These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38773067)

  • 1. Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance.
    Yang Y; Zhu F; Zhang X; Chen P; Wang Y; Zhu J; Ding Y; Cheng L; Li C; Jiang H; Wang Z; Lin P; Shi T; Wang M; Liu Q; Xu N; Liu M
    Nat Commun; 2024 May; 15(1):4318. PubMed ID: 38773067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New neural circuits for robot phonotaxis.
    Reeve RE; Webb BH
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2245-66. PubMed ID: 14599318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memristive synapses connect brain and silicon spiking neurons.
    Serb A; Corna A; George R; Khiat A; Rocchi F; Reato M; Maschietto M; Mayr C; Indiveri G; Vassanelli S; Prodromakis T
    Sci Rep; 2020 Feb; 10(1):2590. PubMed ID: 32098971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks.
    Zhang X; Lu J; Wang Z; Wang R; Wei J; Shi T; Dou C; Wu Z; Zhu J; Shang D; Xing G; Chan M; Liu Q; Liu M
    Sci Bull (Beijing); 2021 Aug; 66(16):1624-1633. PubMed ID: 36654296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VLSI circuits implementing computational models of neocortical circuits.
    Wijekoon JH; Dudek P
    J Neurosci Methods; 2012 Sep; 210(1):93-109. PubMed ID: 22342970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple latency-dependent spiking-neuron model of cricket phonotaxis.
    Webb B; Scutt T
    Biol Cybern; 2000 Mar; 82(3):247-69. PubMed ID: 10664111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
    Rahimi Azghadi M; Iannella N; Al-Sarawi S; Abbott D
    PLoS One; 2014; 9(2):e88326. PubMed ID: 24551089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quadrupedal Robot Locomotion: A Biologically Inspired Approach and Its Hardware Implementation.
    Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Puga-Soberanes HJ; Sotelo-Figueroa MA; Melin P
    Comput Intell Neurosci; 2016; 2016():5615618. PubMed ID: 27436997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations.
    Srinivasa N; Cho Y
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1526-38. PubMed ID: 24807999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.
    Zhang J; Zhou D; Cai D; Rangan AV
    J Comput Neurosci; 2014 Aug; 37(1):81-104. PubMed ID: 24338105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.
    Johnston SP; Prasad G; Maguire L; McGinnity TM
    Int J Neural Syst; 2010 Dec; 20(6):447-61. PubMed ID: 21117269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm.
    Juarez-Lora A; Ponce-Ponce VH; Sossa H; Rubio-Espino E
    Front Neurorobot; 2022; 16():904017. PubMed ID: 35663727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-optical spiking neurosynaptic networks with self-learning capabilities.
    Feldmann J; Youngblood N; Wright CD; Bhaskaran H; Pernice WHP
    Nature; 2019 May; 569(7755):208-214. PubMed ID: 31068721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complex-valued firing-rate model that approximates the dynamics of spiking networks.
    Schaffer ES; Ostojic S; Abbott LF
    PLoS Comput Biol; 2013 Oct; 9(10):e1003301. PubMed ID: 24204236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.