BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38773081)

  • 1. Towards silent and efficient flight by combining bioinspired owl feather serrations with cicada wing geometry.
    Wei Z; Wang S; Farris S; Chennuri N; Wang N; Shinsato S; Demir K; Horii M; Gu GX
    Nat Commun; 2024 May; 15(1):4337. PubMed ID: 38773081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.
    Rao C; Ikeda T; Nakata T; Liu H
    Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes).
    Weger M; Wagner H
    PLoS One; 2016; 11(3):e0149236. PubMed ID: 26934104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.
    Weger M; Wagner H
    J Anat; 2017 May; 230(5):734-742. PubMed ID: 28255996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.
    Rao C; Liu H
    Bioinspir Biomim; 2018 Jul; 13(5):056002. PubMed ID: 29882513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model.
    Rong J; Jiang Y; Murayama Y; Ishibashi R; Murakami M; Liu H
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications.
    Bachmann T; Wagner H
    J Anat; 2011 Aug; 219(2):192-202. PubMed ID: 21507001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the Dorsal Velvet of Barn Owl Wing Feathers Decreases Rubbing Sounds during Flapping Flight.
    LePiane K; Clark CJ
    Integr Comp Biol; 2020 Nov; 60(5):1068-1079. PubMed ID: 32525524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations.
    Wang J; Ishibashi K; Joto M; Ikeda T; Fujii T; Nakata T; Liu H
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34243175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of barn owl leading edge serrations with freestream turbulence.
    Midmer A; Brücker C; Weger M; Wagner H; Bleckmann H
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38569525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrity of and damage to wings, feather vanes and serrations in barn owls.
    Piedrahita P; Krings M; Nikolay P; Mundt N; Quezada G; Masaquiza Chango E; Wagner H
    Zoology (Jena); 2021 Aug; 147():125930. PubMed ID: 34029885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing.
    Muthuramalingam M; Talboys E; Wagner H; Bruecker C
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33137801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls.
    Li D; Liu X; Hu F; Wang L
    Bioinspir Biomim; 2019 Dec; 15(1):016009. PubMed ID: 31665715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Reynolds Number and Distribution on Passive Flow Control in Owl-Inspired Leading-Edge Serrations.
    Rao C; Liu H
    Integr Comp Biol; 2020 Nov; 60(5):1135-1146. PubMed ID: 32805051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational investigation of cicada aerodynamics in forward flight.
    Wan H; Dong H; Gai K
    J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of leading-edge serrations in controlling the flow over owls' wing.
    Saussaman T; Nafi A; Charland D; Ben-Gida H; Gurka R
    Bioinspir Biomim; 2023 Sep; 18(6):. PubMed ID: 37650253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.