These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38773081)

  • 21. Experimental study of a passive control of airfoil lift using bioinspired feather flap.
    Wang L; Alam MM; Zhou Y
    Bioinspir Biomim; 2019 Sep; 14(6):066005. PubMed ID: 31434057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of wing flexibility on sound generation of flapping wings.
    Geng B; Xue Q; Zheng X; Liu G; Ren Y; Dong H
    Bioinspir Biomim; 2017 Dec; 13(1):016010. PubMed ID: 28777744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.
    Ito MR; Duan C; Wissa AA
    Bioinspir Biomim; 2019 Aug; 14(5):056015. PubMed ID: 31357180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism and scaling of wing tone generation in mosquitoes.
    Seo JH; Hedrick TL; Mittal R
    Bioinspir Biomim; 2019 Dec; 15(1):016008. PubMed ID: 31694005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion.
    Chang E; Matloff LY; Stowers AK; Lentink D
    Sci Robot; 2020 Jan; 5(38):. PubMed ID: 33022590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia.
    Bachmann T; Klän S; Baumgartner W; Klaas M; Schröder W; Wagner H
    Front Zool; 2007 Nov; 4():23. PubMed ID: 18031576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.
    Hieronymus TL
    J Anat; 2016 Nov; 229(5):631-656. PubMed ID: 27320170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Features of owl wings that promote silent flight.
    Wagner H; Weger M; Klaas M; Schröder W
    Interface Focus; 2017 Feb; 7(1):20160078. PubMed ID: 28163870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow sensing on dragonfly wings.
    Uhrhan MJ; Bomphrey RJ; Lin HT
    Ann N Y Acad Sci; 2024 Jun; 1536(1):107-121. PubMed ID: 38837424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.
    Gamble LL; Harvey C; Inman DJ
    Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inner vane fringes of barn owl feathers reconsidered: morphometric data and functional aspects.
    Bachmann T; Wagner H; Tropea C
    J Anat; 2012 Jul; 221(1):1-8. PubMed ID: 22471670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired morphing wings: mechanical design and wind tunnel experiments.
    Kilian L; Shahid F; Zhao JS; Nayeri CN
    Bioinspir Biomim; 2022 Jul; 17(4):. PubMed ID: 35609562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
    Young J; Walker SM; Bomphrey RJ; Taylor GK; Thomas AL
    Science; 2009 Sep; 325(5947):1549-52. PubMed ID: 19762645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ontogeny of lift and drag production in ground birds.
    Heers AM; Tobalske BW; Dial KP
    J Exp Biol; 2011 Mar; 214(Pt 5):717-25. PubMed ID: 21307057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.