These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 38773161)

  • 1. COVID‑19 detection from chest X-ray images using transfer learning.
    El Houby EMF
    Sci Rep; 2024 May; 14(1):11639. PubMed ID: 38773161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches.
    Rahaman MM; Li C; Yao Y; Kulwa F; Rahman MA; Wang Q; Qi S; Kong F; Zhu X; Zhao X
    J Xray Sci Technol; 2020; 28(5):821-839. PubMed ID: 32773400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images.
    Khan AI; Shah JL; Bhat MM
    Comput Methods Programs Biomed; 2020 Nov; 196():105581. PubMed ID: 32534344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization.
    Mahmud T; Rahman MA; Fattah SA
    Comput Biol Med; 2020 Jul; 122():103869. PubMed ID: 32658740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images.
    Zhang R; Guo Z; Sun Y; Lu Q; Xu Z; Yao Z; Duan M; Liu S; Ren Y; Huang L; Zhou F
    Interdiscip Sci; 2020 Dec; 12(4):555-565. PubMed ID: 32959234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms.
    Albahli S; Albattah W
    J Xray Sci Technol; 2020; 28(5):841-850. PubMed ID: 32804113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms.
    Heidari M; Mirniaharikandehei S; Khuzani AZ; Danala G; Qiu Y; Zheng B
    Int J Med Inform; 2020 Dec; 144():104284. PubMed ID: 32992136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios.
    Pereira RM; Bertolini D; Teixeira LO; Silla CN; Costa YMG
    Comput Methods Programs Biomed; 2020 Oct; 194():105532. PubMed ID: 32446037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification With Chest CT.
    Sun L; Mo Z; Yan F; Xia L; Shan F; Ding Z; Song B; Gao W; Shao W; Shi F; Yuan H; Jiang H; Wu D; Wei Y; Gao Y; Sui H; Zhang D; Shen D
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2798-2805. PubMed ID: 32845849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks.
    Apostolopoulos ID; Mpesiana TA
    Phys Eng Sci Med; 2020 Jun; 43(2):635-640. PubMed ID: 32524445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: Model Development and Validation.
    Ko H; Chung H; Kang WS; Kim KW; Shin Y; Kang SJ; Lee JH; Kim YJ; Kim NY; Jung H; Lee J
    J Med Internet Res; 2020 Jun; 22(6):e19569. PubMed ID: 32568730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of COVID-19 cases using deep neural networks with X-ray images.
    Ozturk T; Talo M; Yildirim EA; Baloglu UB; Yildirim O; Rajendra Acharya U
    Comput Biol Med; 2020 Jun; 121():103792. PubMed ID: 32568675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning.
    Minaee S; Kafieh R; Sonka M; Yazdani S; Jamalipour Soufi G
    Med Image Anal; 2020 Oct; 65():101794. PubMed ID: 32781377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.
    V J S; D JF
    Comput Math Methods Med; 2021; 2021():9269173. PubMed ID: 34795794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.
    Qi X; Brown LG; Foran DJ; Nosher J; Hacihaliloglu I
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):197-206. PubMed ID: 33420641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks.
    Singh D; Kumar V; Vaishali ; Kaur M
    Eur J Clin Microbiol Infect Dis; 2020 Jul; 39(7):1379-1389. PubMed ID: 32337662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence.
    Ozsahin I; Sekeroglu B; Musa MS; Mustapha MT; Uzun Ozsahin D
    Comput Math Methods Med; 2020; 2020():9756518. PubMed ID: 33014121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COVID-19 diagnosis from chest X-ray images using transfer learning: Enhanced performance by debiasing dataloader.
    Polat Ç; Karaman O; Karaman C; Korkmaz G; Balcı MC; Kelek SE
    J Xray Sci Technol; 2021; 29(1):19-36. PubMed ID: 33459685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNN-RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images.
    Kanjanasurat I; Tenghongsakul K; Purahong B; Lasakul A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study.
    Wu X; Hui H; Niu M; Li L; Wang L; He B; Yang X; Li L; Li H; Tian J; Zha Y
    Eur J Radiol; 2020 Jul; 128():109041. PubMed ID: 32408222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.