These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38773209)
41. Experimental Core Flooding Investigation of New ZnO-γAl Jafarbeigi E; Ahmadi Y; Mansouri M; Ayatollahi S ACS Omega; 2022 Nov; 7(43):39107-39121. PubMed ID: 36340127 [TBL] [Abstract][Full Text] [Related]
42. Investigation of Hybrid Nanoparticle-Acid Fluids (HNAFs): Influence of Wettability and Interfacial Tension Mechanisms in Harsh Carbonate Reservoirs for Improved Oil Recovery. Haroun M; Rahman MM; Al Kobaisi M; Kim M; Suboyin A; Somra B; Abubacker Ponnambathayil J; Punjabi S ACS Omega; 2022 Nov; 7(45):40853-40859. PubMed ID: 36406562 [TBL] [Abstract][Full Text] [Related]
43. Advancing "Carbon Peak" and "Carbon Neutrality" in China: A Comprehensive Review of Current Global Research on Carbon Capture, Utilization, and Storage Technology and Its Implications. Li H ACS Omega; 2023 Nov; 8(45):42086-42101. PubMed ID: 38024721 [TBL] [Abstract][Full Text] [Related]
44. Impact of organic solutes on capillary phenomena in water-CO Sun EW; Bourg IC J Colloid Interface Sci; 2023 Jan; 629(Pt A):265-275. PubMed ID: 36081206 [TBL] [Abstract][Full Text] [Related]
45. Wettability alteration of oil-wet carbonate by silica nanofluid. Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426 [TBL] [Abstract][Full Text] [Related]
46. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery. Zhao J; Wen D RSC Adv; 2017 Aug; 7(66):41391-41398. PubMed ID: 29308190 [TBL] [Abstract][Full Text] [Related]
47. Hydrogen wettability of carbonate formations: Implications for hydrogen geo-storage. Hosseini M; Fahimpour J; Ali M; Keshavarz A; Iglauer S J Colloid Interface Sci; 2022 May; 614():256-266. PubMed ID: 35101673 [TBL] [Abstract][Full Text] [Related]
48. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO Carroll SA; Iyer J; Walsh SDC Acc Chem Res; 2017 Aug; 50(8):1829-1837. PubMed ID: 28741360 [TBL] [Abstract][Full Text] [Related]
49. Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO Ali M; Al-Anssari S; Arif M; Barifcani A; Sarmadivaleh M; Stalker L; Lebedev M; Iglauer S J Colloid Interface Sci; 2019 Jan; 534():88-94. PubMed ID: 30216836 [TBL] [Abstract][Full Text] [Related]
50. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2. Frerichs J; Rakoczy J; Ostertag-Henning C; Krüger M Environ Sci Technol; 2014 Jan; 48(2):1306-14. PubMed ID: 24320192 [TBL] [Abstract][Full Text] [Related]
51. Study of Asphaltene Precipitation during CO Parsaei R; Kazemzadeh Y; Riazi M ACS Omega; 2020 Apr; 5(14):7877-7884. PubMed ID: 32309696 [TBL] [Abstract][Full Text] [Related]
52. Interaction of low salinity surfactant nanofluids with carbonate surfaces and molecular level dynamics at fluid-fluid interface at ScCO Jha NK; Ivanova A; Lebedev M; Barifcani A; Cheremisin A; Iglauer S; Sangwai JS; Sarmadivaleh M J Colloid Interface Sci; 2021 Mar; 586():315-325. PubMed ID: 33148450 [TBL] [Abstract][Full Text] [Related]
53. CO Iglauer S Acc Chem Res; 2017 May; 50(5):1134-1142. PubMed ID: 28406029 [TBL] [Abstract][Full Text] [Related]
54. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China. Tian X; Cheng L; Cao R; Zhang M; Guo Q; Wang Y; Zhang J; Cui Y J Environ Biol; 2015 Jul; 36 Spec No():789-97. PubMed ID: 26387353 [TBL] [Abstract][Full Text] [Related]
55. Rapid microbial methanogenesis during CO Tyne RL; Barry PH; Lawson M; Byrne DJ; Warr O; Xie H; Hillegonds DJ; Formolo M; Summers ZM; Skinner B; Eiler JM; Ballentine CJ Nature; 2021 Dec; 600(7890):670-674. PubMed ID: 34937895 [TBL] [Abstract][Full Text] [Related]
56. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system. Adil M; Mohd Zaid H; Raza F; Agam MA PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369 [TBL] [Abstract][Full Text] [Related]
57. Enhanced oil recovery by using modified ZnO nanocomposites in sandstone oil reservoirs. Ahmadi Y; Mansouri M; Pourafshary P Sci Rep; 2024 Feb; 14(1):2766. PubMed ID: 38307963 [TBL] [Abstract][Full Text] [Related]
58. CO Hassanpouryouzband A; Yang J; Tohidi B; Chuvilin E; Istomin V; Bukhanov B; Cheremisin A Environ Sci Technol; 2018 Apr; 52(7):4324-4330. PubMed ID: 29513532 [TBL] [Abstract][Full Text] [Related]
59. Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface. Zhao L; Lin S; Mendenhall JD; Yuet PK; Blankschtein D J Phys Chem B; 2011 May; 115(19):6076-87. PubMed ID: 21517060 [TBL] [Abstract][Full Text] [Related]
60. Interfacial tension and wettability in water-carbon dioxide systems: experiments and self-consistent field modeling. Banerjee S; Hassenklöver E; Kleijn JM; Cohen Stuart MA; Leermakers FA J Phys Chem B; 2013 Jul; 117(28):8524-35. PubMed ID: 23834700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]