These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 38773231)
1. Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic. Hamamoto H J Antibiot (Tokyo); 2024 Aug; 77(8):477-485. PubMed ID: 38773231 [TBL] [Abstract][Full Text] [Related]
2. Identification of lysocin E using a silkworm model of bacterial infection. Hamamoto H; Sekimizu K Drug Discov Ther; 2016 Feb; 10(1):24-9. PubMed ID: 26911796 [TBL] [Abstract][Full Text] [Related]
3. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Hamamoto H; Urai M; Ishii K; Yasukawa J; Paudel A; Murai M; Kaji T; Kuranaga T; Hamase K; Katsu T; Su J; Adachi T; Uchida R; Tomoda H; Yamada M; Souma M; Kurihara H; Inoue M; Sekimizu K Nat Chem Biol; 2015 Feb; 11(2):127-33. PubMed ID: 25485686 [TBL] [Abstract][Full Text] [Related]
4. [Development of Antibiotics Using Silkworm Bacteria and Fungi Infection Model]. Hamamoto H; Sekimizu K Yakugaku Zasshi; 2018; 138(7):895-899. PubMed ID: 29962465 [TBL] [Abstract][Full Text] [Related]
5. [Development of Novel Antibiotic Lysocin E Identified by Silkworm Infection Model]. Hamamoto H; Sekimizu K Yakugaku Zasshi; 2017; 137(4):389-392. PubMed ID: 28381711 [TBL] [Abstract][Full Text] [Related]
6. Serum apolipoprotein A-I potentiates the therapeutic efficacy of lysocin E against Staphylococcus aureus. Hamamoto H; Panthee S; Paudel A; Ishii K; Yasukawa J; Su J; Miyashita A; Itoh H; Tokumoto K; Inoue M; Sekimizu K Nat Commun; 2021 Nov; 12(1):6364. PubMed ID: 34737305 [TBL] [Abstract][Full Text] [Related]
7. Advantage and issue of silkworm model for development of anti-infective agents. Hamamoto H Jpn J Antibiot; 2016 Oct; 69(5):301-308. PubMed ID: 30226943 [TBL] [Abstract][Full Text] [Related]
8. Advantages of the Silkworm As an Animal Model for Developing Novel Antimicrobial Agents. Panthee S; Paudel A; Hamamoto H; Sekimizu K Front Microbiol; 2017; 8():373. PubMed ID: 28326075 [TBL] [Abstract][Full Text] [Related]
9. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. Yagi A; Uchida R; Hamamoto H; Sekimizu K; Kimura KI; Tomoda H J Antibiot (Tokyo); 2017 May; 70(5):685-690. PubMed ID: 28446822 [TBL] [Abstract][Full Text] [Related]
10. Development of a high-throughput strategy for discovery of potent analogues of antibiotic lysocin E. Itoh H; Tokumoto K; Kaji T; Paudel A; Panthee S; Hamamoto H; Sekimizu K; Inoue M Nat Commun; 2019 Jul; 10(1):2992. PubMed ID: 31278250 [TBL] [Abstract][Full Text] [Related]
11. [The Usefulness of Silkworms as a Model Animal for Evaluating the Effectiveness of Medicine and Food]. Sekimizu K Yakugaku Zasshi; 2017; 137(5):551-562. PubMed ID: 28458287 [TBL] [Abstract][Full Text] [Related]
12. Total synthesis and biological evaluation of the antibiotic lysocin E and its enantiomeric, epimeric, and N-demethylated analogues. Murai M; Kaji T; Kuranaga T; Hamamoto H; Sekimizu K; Inoue M Angew Chem Int Ed Engl; 2015 Jan; 54(5):1556-60. PubMed ID: 25504563 [TBL] [Abstract][Full Text] [Related]
13. Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Kaito C; Akimitsu N; Watanabe H; Sekimizu K Microb Pathog; 2002 Apr; 32(4):183-90. PubMed ID: 12079408 [TBL] [Abstract][Full Text] [Related]
14. Silkworm fungal infection model for identification of virulence genes in pathogenic fungus and screening of novel antifungal drugs. Ishii M; Matsumoto Y; Nakamura I; Sekimizu K Drug Discov Ther; 2017 Mar; 11(1):1-5. PubMed ID: 28228617 [TBL] [Abstract][Full Text] [Related]
15. Development of an in vivo-mimic silkworm infection model with Mycobacterium avium complex. Yagi A; Yamazaki H; Terahara T; Yang T; Hamamoto H; Imada C; Tomoda H; Uchida R Drug Discov Ther; 2021 Jan; 14(6):287-295. PubMed ID: 33250497 [TBL] [Abstract][Full Text] [Related]
16. An efficient method to screen for the soil bacteria producing therapeutically effective antibiotics. Hamamoto H; Panthee S; Hashimoto K; Tsuchida T; Sekimizu K J Antibiot (Tokyo); 2021 Dec; 74(12):850-855. PubMed ID: 34493849 [TBL] [Abstract][Full Text] [Related]
17. Usefulness of silkworm as a host animal for understanding pathogenicity of Cryptococcus neoformans. Ishii M; Matsumoto Y; Sekimizu K Drug Discov Ther; 2016 Feb; 10(1):9-13. PubMed ID: 26902902 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Anti-Mycobacterial Compounds in a Silkworm Infection Model with Hosoda K; Koyama N; Hamamoto H; Yagi A; Uchida R; Kanamoto A; Tomoda H Molecules; 2020 Oct; 25(21):. PubMed ID: 33121091 [TBL] [Abstract][Full Text] [Related]
19. A Silkworm Infection Model for Evaluating In Vivo Biofilm Formation by Pathogenic Fungi. Matsumoto Y; Eshima S; Kurakado S; Sugita T Med Mycol J; 2024; 65(1):7-12. PubMed ID: 38417885 [TBL] [Abstract][Full Text] [Related]
20. Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model. Takemura-Uchiyama I; Uchiyama J; Kato S; Inoue T; Ujihara T; Ohara N; Daibata M; Matsuzaki S FEMS Microbiol Lett; 2013 Oct; 347(1):52-60. PubMed ID: 23869440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]