These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38773744)
1. Synthesis and characterization of TiNbZrMo medium-entropy bio-composites: Microstructure, mechanical properties, and in vitro degradation. Say Y J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35415. PubMed ID: 38773744 [TBL] [Abstract][Full Text] [Related]
2. Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation. Du P; Cui Z; Xiang T; Li Y; Zhang L; Cai Z; Zhao M; Xie G Acta Biomater; 2024 Jun; 181():469-482. PubMed ID: 38723926 [TBL] [Abstract][Full Text] [Related]
3. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering. Wang X; Chen Y; Xu L; Xiao S; Kong F; Woo KD J Mech Behav Biomed Mater; 2011 Nov; 4(8):2074-80. PubMed ID: 22098907 [TBL] [Abstract][Full Text] [Related]
4. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264 [TBL] [Abstract][Full Text] [Related]
5. Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications. Kumar R; Agrawal A J Mech Behav Biomed Mater; 2023 Jun; 142():105852. PubMed ID: 37068431 [TBL] [Abstract][Full Text] [Related]
6. Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications. Hua Z; Zhang D; Guo L; Lin J; Li Y; Wen C Acta Biomater; 2024 Aug; 184():444-460. PubMed ID: 38897338 [TBL] [Abstract][Full Text] [Related]
7. Nb-Ti-Zr alloys for orthopedic implants. Zhang T; Ou P; Ruan J; Yang H J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099 [TBL] [Abstract][Full Text] [Related]
8. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
9. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Nagase T; Iijima Y; Matsugaki A; Ameyama K; Nakano T Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110322. PubMed ID: 31761171 [TBL] [Abstract][Full Text] [Related]
10. Mechanical, physical, and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys. Ribeiro AL; Junior RC; Cardoso FF; Filho RB; Vaz LG J Mater Sci Mater Med; 2009 Aug; 20(8):1629-36. PubMed ID: 19337820 [TBL] [Abstract][Full Text] [Related]
11. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications. Nnamchi PS; Obayi CS; Todd I; Rainforth MW J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649 [TBL] [Abstract][Full Text] [Related]
12. Development of binary and ternary titanium alloys for dental implants. Cordeiro JM; Beline T; Ribeiro ALR; Rangel EC; da Cruz NC; Landers R; Faverani LP; Vaz LG; Fais LMG; Vicente FB; Grandini CR; Mathew MT; Sukotjo C; Barão VAR Dent Mater; 2017 Nov; 33(11):1244-1257. PubMed ID: 28778495 [TBL] [Abstract][Full Text] [Related]
13. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants. Tan MHC; Baghi AD; Ghomashchi R; Xiao W; Oskouei RH J Mech Behav Biomed Mater; 2019 Nov; 99():78-85. PubMed ID: 31344525 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of biocompatible Ti-6Al-4V composite reinforced with ZrO Pul M; Erdem Ü; Bozer BM; Şimşek T; Yılmazel R; Erten MY Microsc Res Tech; 2024 Nov; 87(11):2728-2744. PubMed ID: 38988128 [TBL] [Abstract][Full Text] [Related]
15. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys. Gabriel SB; Nunes CA; Soares Gde A Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944 [TBL] [Abstract][Full Text] [Related]
16. Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties. Balog M; Ibrahim AMH; Krizik P; Bajana O; Klimova A; Catic A; Schauperl Z J Mech Behav Biomed Mater; 2019 Feb; 90():45-53. PubMed ID: 30343170 [TBL] [Abstract][Full Text] [Related]
17. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Fischer M; Joguet D; Robin G; Peltier L; Laheurte P Mater Sci Eng C Mater Biol Appl; 2016 May; 62():852-9. PubMed ID: 26952492 [TBL] [Abstract][Full Text] [Related]
18. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847 [TBL] [Abstract][Full Text] [Related]
19. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. Zhao X; Niinomi M; Nakai M J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900 [TBL] [Abstract][Full Text] [Related]
20. Development of Ti-10Nb alloy by powder metallurgy processing route for dental application. Kumar R; Gautam RK J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35338. PubMed ID: 37846459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]