These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38773852)
1. A taste of space: Remote animal observations and discrete-choice models provide new insights into foraging and density dynamics for a large subarctic herbivore. Ehlers L; Palm E; Herriges J; Bentzen T; Suitor M; Joly K; Millspaugh J; Donnelly P; Gross J; Wells J; Larue B; Hebblewhite M J Anim Ecol; 2024 Jul; 93(7):891-905. PubMed ID: 38773852 [TBL] [Abstract][Full Text] [Related]
2. Critical summer foraging tradeoffs in a subarctic ungulate. Ehlers L; Coulombe G; Herriges J; Bentzen T; Suitor M; Joly K; Hebblewhite M Ecol Evol; 2021 Dec; 11(24):17835-17872. PubMed ID: 35003643 [TBL] [Abstract][Full Text] [Related]
3. Selection of summer feeding sites and food resources by female migratory caribou (Rangifer tarandus) determined using camera collars. Béland S; Vuillaume B; Leclerc M; Bernier M; Côté SD PLoS One; 2023; 18(11):e0294846. PubMed ID: 38019854 [TBL] [Abstract][Full Text] [Related]
4. Foraging across a variable landscape: behavioral decisions made by woodland caribou at multiple spatial scales. Johnson CJ; Parker KL; Heard DC Oecologia; 2001 May; 127(4):590-602. PubMed ID: 28547497 [TBL] [Abstract][Full Text] [Related]
5. The role of predation in the decline and extirpation of woodland caribou. Wittmer HU; Sinclair AR; McLellan BN Oecologia; 2005 Jun; 144(2):257-67. PubMed ID: 15891849 [TBL] [Abstract][Full Text] [Related]
6. Changes in landscape composition influence the decline of a threatened woodland caribou population. Wittmer HU; McLellan BN; Serrouya R; Apps CD J Anim Ecol; 2007 May; 76(3):568-79. PubMed ID: 17439473 [TBL] [Abstract][Full Text] [Related]
7. Dynamic selection for forage quality and quantity in response to phenology and insects in an Arctic ungulate. Johnson HE; Golden TS; Adams LG; Gustine DD; Lenart EA; Barboza PS Ecol Evol; 2021 Sep; 11(17):11664-11688. PubMed ID: 34522332 [TBL] [Abstract][Full Text] [Related]
8. Behavioural trade-offs in response to external stimuli: time allocation of an Arctic ungulate during varying intensities of harassment by parasitic flies. Witter LA; Johnson CJ; Croft B; Gunn A; Gillingham MP J Anim Ecol; 2012 Jan; 81(1):284-95. PubMed ID: 21950373 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore. Rayl ND; Bastille-Rousseau G; Organ JF; Mumma MA; Mahoney SP; Soulliere CE; Lewis KP; Otto RD; Murray DL; Waits LP; Fuller TK J Anim Ecol; 2018 May; 87(3):874-887. PubMed ID: 29450888 [TBL] [Abstract][Full Text] [Related]
10. Functional responses in animal movement explain spatial heterogeneity in animal-habitat relationships. Mason THE; Fortin D J Anim Ecol; 2017 Jul; 86(4):960-971. PubMed ID: 28390110 [TBL] [Abstract][Full Text] [Related]
11. Space-use behaviour of woodland caribou based on a cognitive movement model. Avgar T; Baker JA; Brown GS; Hagens JS; Kittle AM; Mallon EE; McGreer MT; Mosser A; Newmaster SG; Patterson BR; Reid DE; Rodgers AR; Shuter J; Street GM; Thompson I; Turetsky MJ; Wiebe PA; Fryxell JM J Anim Ecol; 2015 Jul; 84(4):1059-70. PubMed ID: 25714592 [TBL] [Abstract][Full Text] [Related]
12. Summer resource selection and identification of important habitat prior to industrial development for the Teshekpuk Caribou Herd in northern Alaska. Wilson RR; Prichard AK; Parrett LS; Person BT; Carroll GM; Smith MA; Rea CL; Yokel DA PLoS One; 2012; 7(11):e48697. PubMed ID: 23144932 [TBL] [Abstract][Full Text] [Related]
13. Increasing fire frequency and severity will increase habitat loss for a boreal forest indicator species. Palm EC; Suitor MJ; Joly K; Herriges JD; Kelly AP; Hervieux D; Russell KLM; Bentzen TW; Larter NC; Hebblewhite M Ecol Appl; 2022 Apr; 32(3):e2549. PubMed ID: 35094462 [TBL] [Abstract][Full Text] [Related]
14. Negative frequency-dependent foraging behaviour in a generalist herbivore (Alces alces) and its stabilizing influence on food web dynamics. Hoy SR; Vucetich JA; Liu R; DeAngelis DL; Peterson RO; Vucetich LM; Henderson JJ J Anim Ecol; 2019 Sep; 88(9):1291-1304. PubMed ID: 31131882 [TBL] [Abstract][Full Text] [Related]
16. Impacts of human disturbance on large prey species: do behavioral reactions translate to fitness consequences? Leblond M; Dussault C; Ouellet JP PLoS One; 2013; 8(9):e73695. PubMed ID: 24040029 [TBL] [Abstract][Full Text] [Related]
17. Foraging behaviour at multiple temporal scales in a wild alpine equid. St-Louis A; Côté SD Oecologia; 2012 May; 169(1):167-76. PubMed ID: 22033764 [TBL] [Abstract][Full Text] [Related]
18. Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future. Severson JP; Johnson HE; Arthur SM; Leacock WB; Suitor MJ Glob Chang Biol; 2021 Oct; 27(19):4546-4563. PubMed ID: 33993595 [TBL] [Abstract][Full Text] [Related]
19. Comment arising from a paper by Wittmer et al.: hypothesis testing for top-down and bottom-up effects in woodland caribou population dynamics. Brown GS; Landriault L; Sleep DJ; Mallory FF Oecologia; 2007 Dec; 154(3):485-92. PubMed ID: 17891419 [TBL] [Abstract][Full Text] [Related]
20. Estimating changes in lichen mat volume through time and related effects on barren ground caribou (Rangifer tarandus groenlandicus) movement. Rickbeil GJ; Hermosilla T; Coops NC; White JC; Wulder MA PLoS One; 2017; 12(3):e0172669. PubMed ID: 28328953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]