These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38773926)

  • 1. Selfish herd effects in aggregated caterpillars and their interaction with warning signals.
    Kersh-Mellor R; Montgomery SH; McLellan CF
    Biol Lett; 2024 May; 20(5):20240050. PubMed ID: 38773926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warning Coloration, Body Size, and the Evolution of Gregarious Behavior in Butterfly Larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Am Nat; 2023 Jul; 202(1):64-77. PubMed ID: 37384762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Birds learn to avoid aposematic prey by using the appearance of host plants.
    McLellan CF; Scott-Samuel NE; Cuthill IC
    Curr Biol; 2021 Dec; 31(23):5364-5369.e4. PubMed ID: 34624210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple benefits of gregariousness cover detectability costs in aposematic aggregations.
    Riipi M; Alatalo RV; Lindström L; Mappes J
    Nature; 2001 Oct; 413(6855):512-4. PubMed ID: 11586357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights.
    Puurtinen M; Kaitala V
    Evolution; 2006 Nov; 60(11):2246-56. PubMed ID: 17236418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predatory birds and ants partition caterpillar prey by body size and diet breadth.
    Singer MS; Clark RE; Lichter-Marck IH; Johnson ER; Mooney KA
    J Anim Ecol; 2017 Oct; 86(6):1363-1371. PubMed ID: 28686298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Swarming Behavior Is Shaped by How Predators Attack.
    Olson RS; Knoester DB; Adami C
    Artif Life; 2016; 22(3):299-318. PubMed ID: 27139941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong antiapostatic selection against novel rare aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9181-4. PubMed ID: 11459937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predator experience on cryptic prey affects the survival of conspicuous aposematic prey.
    Lindström L; Alatalo RV; Lyytinen A; Mappes J
    Proc Biol Sci; 2001 Feb; 268(1465):357-61. PubMed ID: 11270431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing temporal dynamics of predation and effectiveness of caterpillar visual defense using sawfly larval color and resting posture as a model.
    Pan X; Mizuno T; Ito K; Ohsugi T; Nishimichi S; Nomiya R; Ohno M; Yamawo A; Nakamura A
    Insect Sci; 2021 Dec; 28(6):1800-1815. PubMed ID: 33205542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coevolution of group-living and aposematism in caterpillars: warning colouration may facilitate the evolution from group-living to solitary habits.
    Wang L; Cornell SJ; Speed MP; Arbuckle K
    BMC Ecol Evol; 2021 Feb; 21(1):25. PubMed ID: 33583398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predator selection on multicomponent warning signals in an aposematic moth.
    Hämäläinen L; Binns GE; Hart NS; Mappes J; McDonald PG; O'Neill LG; Rowland HM; Umbers KDL; Herberstein ME
    Behav Ecol; 2024; 35(1):arad097. PubMed ID: 38550303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance-dependent pattern blending can camouflage salient aposematic signals.
    Barnett JB; Cuthill IC; Scott-Samuel NE
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28679722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern variation is linked to anti-predator coloration in butterfly larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Proc Biol Sci; 2023 Jun; 290(2001):20230811. PubMed ID: 37357867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aposematism: balancing salience and camouflage.
    Barnett JB; Scott-Samuel NE; Cuthill IC
    Biol Lett; 2016 Aug; 12(8):. PubMed ID: 27484645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth.
    Rönkä K; Valkonen JK; Nokelainen O; Rojas B; Gordon S; Burdfield-Steel E; Mappes J
    Ecol Lett; 2020 Nov; 23(11):1654-1663. PubMed ID: 32881319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars.
    Grant JB
    J Anim Ecol; 2007 May; 76(3):439-47. PubMed ID: 17439461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does colour polymorphism enhance survival of prey populations?
    Wennersten L; Forsman A
    Proc Biol Sci; 2009 Jun; 276(1665):2187-94. PubMed ID: 19324729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body size matters for aposematic prey during predator aversion learning.
    Smith KE; Halpin CG; Rowe C
    Behav Processes; 2014 Nov; 109 Pt B():173-9. PubMed ID: 25256160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the higher importance of signal size over body size in aposematic signaling in insects.
    Remmel T; Tammarub T
    J Insect Sci; 2011; 11():4. PubMed ID: 21521142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.