These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3877400)

  • 1. Early development of vestibular receptors in human embryos. An electron microscopic study.
    Sans A; Dechesne C
    Acta Otolaryngol Suppl; 1985; 423():51-8. PubMed ID: 3877400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early innervation and differentiation of hair cells in the vestibular epithelia of mouse embryos: SEM and TEM study.
    Mbiene JP; Favre D; Sans A
    Anat Embryol (Berl); 1988; 177(4):331-40. PubMed ID: 3354849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent nerve ending development and synaptogenesis in the vestibular epithelium of human fetuses.
    Sans A; Dechesne CJ
    Hear Res; 1987; 28(1):65-72. PubMed ID: 3497145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation and maturation of the sensory hair bundles in the fetal and postnatal vestibular receptors of the mouse: a scanning electron microscopy study.
    Mbiene JP; Sans A
    J Comp Neurol; 1986 Dec; 254(2):271-8. PubMed ID: 3491842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptogenesis in the vestibular sensory epithelium of the chick embryo.
    Ginzberg RD; Gilula NB
    J Neurocytol; 1980 Jun; 9(3):405-24. PubMed ID: 6969297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles in embryonic development and differentiation of vestibular hair cells.
    Anniko M; Nordemar H; Sobin A
    Otolaryngol Head Neck Surg; 1983 Oct; 91(5):540-9. PubMed ID: 6417605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of the internal ear during the 1st trimester of pregnancy. Differentiation of the sensory cells and formation of the 1st synapses].
    Lavigne-Rebillard M; Dechesne C; Pujol R; Sans A; Escudero P
    Ann Otolaryngol Chir Cervicofac; 1985; 102(7):493-8. PubMed ID: 3879139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The growth of cochlear fibers and the formation of their synaptic endings in the avian inner ear: a study with the electron microscope.
    Whitehead MC; Morest DK
    Neuroscience; 1985 Jan; 14(1):277-300. PubMed ID: 3974882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab3A immunolocalization in the mammalian vestibular end-organs during development and comparison with synaptophysin expression.
    Dechesne CJ; Kauff C; Stettler O; Tavitian B
    Brain Res Dev Brain Res; 1997 Mar; 99(1):103-11. PubMed ID: 9088571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of apical part and nerve terminals of human vestibular hair cells.
    Morita I; Komatsuzaki A; Kanda T; Tatsuoka H; Chiba T
    Acta Otolaryngol Suppl; 1995; 519():83-6. PubMed ID: 7610899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic development of the specific vestibular hair cell pathology in a strain of the waltzing guinea pig.
    Sobin A; Anniko M
    Acta Otolaryngol; 1983; 96(5-6):397-405. PubMed ID: 6605653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of the vestibular sensory epithelium in the mouse.
    Nordemar H
    Acta Otolaryngol; 1983; 96(5-6):447-56. PubMed ID: 6605657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic and postnatal development of afferent innervation in cat vestibular receptors.
    Favre D; Sans A
    Acta Otolaryngol; 1979; 87(1-2):97-107. PubMed ID: 310629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cellular localization of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y in guinea-pig vestibular sensory organs: a high-resolution confocal microscopy study.
    Scarfone E; Ulfendahl M; Lundeberg T
    Neuroscience; 1996 Nov; 75(2):587-600. PubMed ID: 8931021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice.
    Cheong MA; Steel KP
    Hear Res; 2002 Feb; 164(1-2):179-89. PubMed ID: 11950537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A procedure to label inner ear afferent nerve endings for calcium imaging.
    Boyer S; Ruel J; Puel JL; Chabbert C
    Brain Res Brain Res Protoc; 2004 Jun; 13(2):91-8. PubMed ID: 15171991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural study of striated organelles in vestibular sensory cells of human fetuses.
    Sans A
    Anat Embryol (Berl); 1989; 179(5):457-63. PubMed ID: 2786353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STRUCTURE OF THE MACULA UTRICULI WITH SPECIAL REFERENCE TO DIRECTIONAL INTERPLAY OF SENSORY RESPONSES AS REVEALED BY MORPHOLOGICAL POLARIZATION.
    FLOCK A
    J Cell Biol; 1964 Aug; 22(2):413-31. PubMed ID: 14203389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic structures in the type II hair cell in the vestibular system of the guinea pig. A freeze-fracture and TEM study.
    Bagger-Sjöbäck D; Gulley RL
    Acta Otolaryngol; 1979; 88(5-6):401-11. PubMed ID: 316962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early stages of innervation and sensory cell differentiation in the human fetal organ of Corti.
    Pujol R; Lavigne-Rebillard M
    Acta Otolaryngol Suppl; 1985; 423():43-50. PubMed ID: 3864347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.