These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38774139)
1. Future climatically suitable areas for bats in South Asia. Srinivasulu A; Zeale MRK; Srinivasulu B; Srinivasulu C; Jones G; González-Suárez M Ecol Evol; 2024 May; 14(5):e11420. PubMed ID: 38774139 [TBL] [Abstract][Full Text] [Related]
2. Effects of global change on snakebite envenoming incidence up to 2050: a modelling assessment. Martín G; Erinjery JJ; Ediriweera D; Goldstein E; Somaweera R; de Silva HJ; Lalloo DG; Iwamura T; Murray KA Lancet Planet Health; 2024 Aug; 8(8):e533-e544. PubMed ID: 39122322 [TBL] [Abstract][Full Text] [Related]
3. Modelling distribution in European stream macroinvertebrates under future climates. Domisch S; Araújo MB; Bonada N; Pauls SU; Jähnig SC; Haase P Glob Chang Biol; 2013 Mar; 19(3):752-62. PubMed ID: 23504833 [TBL] [Abstract][Full Text] [Related]
4. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. Hayes MA; Piaggio AJ PLoS One; 2018; 13(2):e0192887. PubMed ID: 29466401 [TBL] [Abstract][Full Text] [Related]
5. Potential impacts of climate change on the geographic distribution of Noedoost F; Behroozian M; Karami S; Joharchi MR Ecol Evol; 2024 Apr; 14(4):e11241. PubMed ID: 38681180 [TBL] [Abstract][Full Text] [Related]
6. Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia. Karami S; Ejtehadi H; Moazzeni H; Vaezi J; Behroozian M Sci Rep; 2022 Nov; 12(1):19893. PubMed ID: 36400923 [TBL] [Abstract][Full Text] [Related]
7. Impact of climate change on the distribution and predicted habitat suitability of two fruit bats ( Ahmed AS; Bekele A; Kasso M; Atickem A Ecol Evol; 2023 Sep; 13(9):e10481. PubMed ID: 37711498 [TBL] [Abstract][Full Text] [Related]
8. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal. Amorim F; Carvalho SB; Honrado J; Rebelo H PLoS One; 2014; 9(1):e87291. PubMed ID: 24475265 [TBL] [Abstract][Full Text] [Related]
9. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran. Morovati M; Karami P; Bahadori Amjas F PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701 [TBL] [Abstract][Full Text] [Related]
10. Global climate change-driven impacts on the Asian distribution of Ran W; Chen J; Zhao Y; Zhang N; Luo G; Zhao Z; Song Y Ecol Evol; 2024 Jul; 14(7):e70003. PubMed ID: 39026963 [TBL] [Abstract][Full Text] [Related]
11. Substantial declines in urban tree habitat predicted under climate change. Burley H; Beaumont LJ; Ossola A; Baumgartner JB; Gallagher R; Laffan S; Esperon-Rodriguez M; Manea A; Leishman MR Sci Total Environ; 2019 Oct; 685():451-462. PubMed ID: 31176230 [TBL] [Abstract][Full Text] [Related]
12. Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios. Adão F; Campos JC; Santos JA; Malheiro AC; Fraga H Front Plant Sci; 2023; 14():974020. PubMed ID: 36844079 [TBL] [Abstract][Full Text] [Related]
13. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios. Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582 [TBL] [Abstract][Full Text] [Related]
14. Planning for climate change through additions to a national protected area network: implications for cost and configuration. Lawler JJ; Rinnan DS; Michalak JL; Withey JC; Randels CR; Possingham HP Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1794):20190117. PubMed ID: 31983335 [TBL] [Abstract][Full Text] [Related]
15. New records and modelling the impacts of climate change on the black-tailed marmosets. Gusmão AC; Evangelista-Vale JC; Pires-Oliveira JC; Barnett AA; da Silva OD PLoS One; 2021; 16(9):e0256270. PubMed ID: 34492030 [TBL] [Abstract][Full Text] [Related]
16. Impact of climate change on the current and future distribution of threatened species of the genus Lessingianthus (Vernonieae: Asteraceae) from the Brazilian Cerrado. Angulo MB; Via DO Pico G; Dematteis M An Acad Bras Cienc; 2021; 93(2):e20190796. PubMed ID: 34190841 [TBL] [Abstract][Full Text] [Related]
17. Decline in the suitable habitat of dominant Abies species in response to climate change in the Hindu Kush Himalayan region: insights from species distribution modelling. Malik RA; Reshi ZA; Rafiq I; Singh SP Environ Monit Assess; 2022 Jul; 194(9):596. PubMed ID: 35861887 [TBL] [Abstract][Full Text] [Related]
18. Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Muylaert RL; Kingston T; Luo J; Vancine MH; Galli N; Carlson CJ; John RS; Rulli MC; Hayman DTS Proc Biol Sci; 2022 May; 289(1975):20220397. PubMed ID: 35611534 [TBL] [Abstract][Full Text] [Related]
19. A phyloclimatic study of Cyclamen. Yesson C; Culham A BMC Evol Biol; 2006 Sep; 6():72. PubMed ID: 16987413 [TBL] [Abstract][Full Text] [Related]
20. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. McIntyre S; Rangel EF; Ready PD; Carvalho BM Parasit Vectors; 2017 Mar; 10(1):157. PubMed ID: 28340594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]