These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 38774220)
1. Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages. Dai Y; Yu S; Ma T; Ding J; Chen K; Zeng G; Xie A; He P; Peng S; Zhang M Front Plant Sci; 2024; 15():1328834. PubMed ID: 38774220 [TBL] [Abstract][Full Text] [Related]
2. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Cen H; Wan L; Zhu J; Li Y; Li X; Zhu Y; Weng H; Wu W; Yin W; Xu C; Bao Y; Feng L; Shou J; He Y Plant Methods; 2019; 15():32. PubMed ID: 30972143 [TBL] [Abstract][Full Text] [Related]
3. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T Plant Methods; 2019; 15():17. PubMed ID: 30828356 [TBL] [Abstract][Full Text] [Related]
4. Utilizing Spectral, Structural and Textural Features for Estimating Oat Above-Ground Biomass Using UAV-Based Multispectral Data and Machine Learning. Dhakal R; Maimaitijiang M; Chang J; Caffe M Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139554 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data. Wang Z; Ma Y; Chen P; Yang Y; Fu H; Yang F; Raza MA; Guo C; Shu C; Sun Y; Yang Z; Chen Z; Ma J Front Plant Sci; 2022; 13():903643. PubMed ID: 35712565 [TBL] [Abstract][Full Text] [Related]
6. Estimation of maize above-ground biomass based on stem-leaf separation strategy integrated with LiDAR and optical remote sensing data. Zhu Y; Zhao C; Yang H; Yang G; Han L; Li Z; Feng H; Xu B; Wu J; Lei L PeerJ; 2019; 7():e7593. PubMed ID: 31576235 [TBL] [Abstract][Full Text] [Related]
7. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery. Liu J; Zhu Y; Song L; Su X; Li J; Zheng J; Zhu X; Ren L; Wang W; Li X Front Plant Sci; 2023; 14():1284235. PubMed ID: 38192693 [TBL] [Abstract][Full Text] [Related]
8. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava ( Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A Plant Methods; 2020; 16():87. PubMed ID: 32549903 [TBL] [Abstract][Full Text] [Related]
9. Precision estimation of winter wheat crop height and above-ground biomass using unmanned aerial vehicle imagery and oblique photoghraphy point cloud data. Li Y; Li C; Cheng Q; Chen L; Li Z; Zhai W; Mao B; Chen Z Front Plant Sci; 2024; 15():1437350. PubMed ID: 39359624 [TBL] [Abstract][Full Text] [Related]
10. Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models. Yang K; Mo J; Luo S; Peng Y; Fang S; Wu X; Zhu R; Li Y; Yuan N; Zhou C; Gong Y Plant Phenomics; 2023; 5():0056. PubMed ID: 37273463 [TBL] [Abstract][Full Text] [Related]
11. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559 [TBL] [Abstract][Full Text] [Related]
12. UAV and Satellite Synergies for Mapping Grassland Aboveground Biomass in Hulunbuir Meadow Steppe. Zhu X; Chen X; Ma L; Liu W Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611535 [TBL] [Abstract][Full Text] [Related]
13. Estimation of the rice aboveground biomass based on the first derivative spectrum and Boruta algorithm. Nian Y; Su X; Yue H; Zhu Y; Li J; Wang W; Sheng Y; Ma Q; Liu J; Li X Front Plant Sci; 2024; 15():1396183. PubMed ID: 38726299 [TBL] [Abstract][Full Text] [Related]
14. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191 [TBL] [Abstract][Full Text] [Related]
15. Using Unmanned Aerial Vehicle-Based Multispectral Image Data to Monitor the Growth of Intercropping Crops in Tea Plantation. Shi Y; Gao Y; Wang Y; Luo D; Chen S; Ding Z; Fan K Front Plant Sci; 2022; 13():820585. PubMed ID: 35283919 [TBL] [Abstract][Full Text] [Related]
16. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice. Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y Front Plant Sci; 2018; 9():936. PubMed ID: 30034405 [TBL] [Abstract][Full Text] [Related]
17. Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models. Bai G; Koehler-Cole K; Scoby D; Thapa VR; Basche A; Ge Y Front Plant Sci; 2023; 14():1277672. PubMed ID: 38259938 [TBL] [Abstract][Full Text] [Related]
18. Multi-dimensional variables and feature parameter selection for aboveground biomass estimation of potato based on UAV multispectral imagery. Luo S; Jiang X; He Y; Li J; Jiao W; Zhang S; Xu F; Han Z; Sun J; Yang J; Wang X; Ma X; Lin Z Front Plant Sci; 2022; 13():948249. PubMed ID: 35968116 [TBL] [Abstract][Full Text] [Related]
19. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height. Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445 [TBL] [Abstract][Full Text] [Related]
20. Novel Feature-Extraction Methods for the Estimation of Above-Ground Biomass in Rice Crops. Jimenez-Sierra DA; Correa ES; Benítez-Restrepo HD; Calderon FC; Mondragon IF; Colorado JD Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]