BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38774519)

  • 1. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot Assistance in Dynamic Smart Environments-A Hierarchical Continual Planning in the Now Framework.
    Harman H; Chintamani K; Simoens P
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for neurosymbolic robot action planning using large language models.
    Capitanelli A; Mastrogiovanni F
    Front Neurorobot; 2024; 18():1342786. PubMed ID: 38895095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Event-triggered robot self-assessment to aid in autonomy adjustment.
    Conlon N; Ahmed N; Szafir D
    Front Robot AI; 2023; 10():1294533. PubMed ID: 38239275
    [No Abstract]   [Full Text] [Related]  

  • 5. Task-Oriented Robot Cognitive Manipulation Planning Using Affordance Segmentation and Logic Reasoning.
    Wang Z; Tian G
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMK-A Knowledge Processing Framework for Autonomous Robotics Perception and Manipulation.
    Diab M; Akbari A; Ud Din M; Rosell J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model predictive manipulation of compliant objects with multi-objective optimizer and adversarial network for occlusion compensation.
    Qi J; Zhou P; Ran G; Gao H; Wang P; Li D; Gao Y; Navarro-Alarcon D
    ISA Trans; 2024 Jul; 150():359-373. PubMed ID: 38797650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semantic Representation of Robot Manipulation with Knowledge Graph.
    Miao R; Jia Q; Sun F; Chen G; Huang H; Miao S
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primitive Action Based Combined Task and Motion Planning for the Service Robot.
    Jeon J; Jung HR; Yumbla F; Luong TA; Moon H
    Front Robot AI; 2022; 9():713470. PubMed ID: 35224001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smooth Autonomous Patrolling for a Differential-Drive Mobile Robot in Dynamic Environments.
    Šelek A; Seder M; Petrović I
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Sensing and Adaptive Reasoning for Enabling Industrial Robots with Interactive Human-Robot Capabilities in Dynamic Environments-A Case Study.
    Zabalza J; Fei Z; Wong C; Yan Y; Mineo C; Yang E; Rodden T; Mehnen J; Pham QC; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Education robot object detection with a brain-inspired approach integrating Faster R-CNN, YOLOv3, and semi-supervised learning.
    Hong Q; Dong H; Deng W; Ping Y
    Front Neurorobot; 2023; 17():1338104. PubMed ID: 38239759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistemic planning for multi-robot systems in communication-restricted environments.
    Bramblett L; Bezzo N
    Front Robot AI; 2023; 10():1149439. PubMed ID: 37287473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Egocentric and Robotic Vision for Object Identification Using Siamese Networks and Superquadric Estimations in Partial Occlusion Scenarios.
    Menendez E; Martínez S; Díaz-de-María F; Balaguer C
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction.
    Bicho E; Louro L; Erlhagen W
    Front Neurorobot; 2010; 4():. PubMed ID: 20725504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Goal-Directed Reasoning and Cooperation in Robots in Shared Workspaces: an Internal Simulation Based Neural Framework.
    Bhat AA; Mohan V
    Cognit Comput; 2018; 10(4):558-576. PubMed ID: 30147802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An autonomous mobile robot path planning strategy using an enhanced slime mold algorithm.
    Zheng L; Hong C; Song H; Chen R
    Front Neurorobot; 2023; 17():1270860. PubMed ID: 37915952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.