These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 3877468)
1. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin. Stoddard JS; Helman SI Am J Physiol; 1985 Nov; 249(5 Pt 2):F662-71. PubMed ID: 3877468 [TBL] [Abstract][Full Text] [Related]
2. Effects of ouabain and furosemide on basolateral membrane Na efflux of frog skin. Cox TC; Helman SI Am J Physiol; 1983 Sep; 245(3):F312-21. PubMed ID: 6604462 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues. Ehrenfeld J; Cragoe EJ; Harvey BJ Pflugers Arch; 1987 Jun; 409(1-2):200-7. PubMed ID: 3039454 [TBL] [Abstract][Full Text] [Related]
4. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase. Cox TC; Helman SI J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920 [TBL] [Abstract][Full Text] [Related]
5. Basolateral membrane chloride transport in isolated epithelia of frog skin. Stoddard JS; Jakobsson E; Helman SI Am J Physiol; 1985 Sep; 249(3 Pt 1):C318-29. PubMed ID: 3876032 [TBL] [Abstract][Full Text] [Related]
6. Effect of ouabain, amiloride, and antidiuretic hormone on the sodium-transport pool in isolated epithelia from frog skin (Rana temporaria). Nielsen R J Membr Biol; 1982; 65(3):221-6. PubMed ID: 6977645 [TBL] [Abstract][Full Text] [Related]
7. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane. Nielsen R Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546 [TBL] [Abstract][Full Text] [Related]
8. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain. Harvey BJ; Kernan RP J Physiol; 1984 Apr; 349():501-17. PubMed ID: 6610743 [TBL] [Abstract][Full Text] [Related]
9. Na+ and K+ transport at basolateral membranes of epithelial cells. III. Voltage independence of basolateral membrane Na+ efflux. Cox TC; Helman SI J Gen Physiol; 1986 Mar; 87(3):503-9. PubMed ID: 2420921 [TBL] [Abstract][Full Text] [Related]
10. Na+ and K+ transport at basolateral membranes of epithelial cells. I. Stoichiometry of the Na,K-ATPase. Cox TC; Helman SI J Gen Physiol; 1986 Mar; 87(3):467-83. PubMed ID: 2420919 [TBL] [Abstract][Full Text] [Related]
11. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin. Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018 [TBL] [Abstract][Full Text] [Related]
12. Effects of basolateral ouabain, amphotericin B, cyanide and potassium on amiloride noise during voltage clamp of Rana pipiens skin support sodium-amiloride competition. Hoshiko T; Grossman RA; Machlup S Biochim Biophys Acta; 1988 Jul; 942(1):186-98. PubMed ID: 2454664 [TBL] [Abstract][Full Text] [Related]
13. Effect of ouabain on electrical conductance of frog skins. Evidence against recycling of sodium. Corcia A; Lahav J; Caplan SR Biochim Biophys Acta; 1980 Feb; 596(2):264-71. PubMed ID: 6965587 [TBL] [Abstract][Full Text] [Related]
14. Effects of intracellular signals on Na+/K(+)-ATPase pump activity in the frog skin epithelium. Ehrenfeld J; Lacoste I; Harvey BJ Biochim Biophys Acta; 1992 Apr; 1106(1):197-208. PubMed ID: 1374642 [TBL] [Abstract][Full Text] [Related]
15. Coupling of volume and Na+ transport in frog skin epithelium. Tang CS; Peterson-Yantorno K; Civan MM Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459 [TBL] [Abstract][Full Text] [Related]
16. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells. Rick R J Membr Biol; 1992 May; 127(3):227-36. PubMed ID: 1495088 [TBL] [Abstract][Full Text] [Related]
17. Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin. Tang J; Abramcheck FJ; Van Driessche W; Helman SI Am J Physiol; 1985 Nov; 249(5 Pt 1):C421-9. PubMed ID: 2415000 [TBL] [Abstract][Full Text] [Related]
18. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase. Harvey B; Lacoste I; Ehrenfeld J J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438 [TBL] [Abstract][Full Text] [Related]
19. Chronic regulation of transepithelial Na+ transport by the rate of apical Na+ entry. Rokaw MD; Sarac E; Lechman E; West M; Angeski J; Johnson JP; Zeidel ML Am J Physiol; 1996 Feb; 270(2 Pt 1):C600-7. PubMed ID: 8779925 [TBL] [Abstract][Full Text] [Related]
20. Metabolic control of intracellular ion concentrations in the frog skin epithelium. Rick R Miner Electrolyte Metab; 1989; 15(3):150-4. PubMed ID: 2542746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]