BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38774957)

  • 1. Association Between Intracochlear Electrode Design and Electrically-Evoked Compound Action Potential Measures in Cochlear Implant Users.
    Kim JS; Hong SH; Moon IJ
    Otolaryngol Head Neck Surg; 2024 May; ():. PubMed ID: 38774957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intraoperative relationship between intracochlear electrical field and excitability of the auditory nerve.
    Söderqvist S; Sinkkonen ST; Sivonen V
    Heliyon; 2022 Dec; 8(12):e11970. PubMed ID: 36478811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ECAP spread of excitation with virtual channels and physical electrodes.
    Hughes ML; Stille LJ; Baudhuin JL; Goehring JL
    Hear Res; 2013 Dec; 306():93-103. PubMed ID: 24095669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array.
    Söderqvist S; Lamminmäki S; Aarnisalo A; Hirvonen T; Sinkkonen ST; Sivonen V
    Hear Res; 2021 Jun; 405():108235. PubMed ID: 33901994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically evoked compound action potential measures for virtual channels versus physical electrodes.
    Hughes ML; Goulson AM
    Ear Hear; 2011; 32(3):323-30. PubMed ID: 21187752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant.
    Busby PA; Battmer RD; Pesch J
    Ear Hear; 2008 Dec; 29(6):853-64. PubMed ID: 18633324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2010 Oct; 31(5):679-92. PubMed ID: 20505513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Applications for Spread of Excitation Functions Obtained Via Electrically Evoked Compound Action Potentials (eCAP).
    Berg KA; DeFreese AJ; Sisler-Dinwiddie AL; Labadie RF; Tawfik KO; Gifford RH
    Otol Neurotol; 2024 Jun; ():. PubMed ID: 38923968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiologic channel interaction, electrode pitch ranking, and behavioral threshold in straight versus perimodiolar cochlear implant electrode arrays.
    Hughes ML; Abbas PJ
    J Acoust Soc Am; 2006 Mar; 119(3):1538-47. PubMed ID: 16583899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is There Any Correlation between Spread of Excitation Width and the Refractory Properties of the Auditory Nerve in Cochlear Implant Users?
    Coutinho da Silva J; Schmidt Goffi-Gomez MV; Tsuji RK; Bento R; Brito Neto R
    Audiol Neurootol; 2021; 26(2):85-94. PubMed ID: 32998132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Perimodiolar Electrodes: Imaging and Electrophysiological Outcomes.
    Mewes A; Brademann G; Hey M
    Otol Neurotol; 2020 Aug; 41(7):e934-e944. PubMed ID: 32658111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cochlear implant electrode array design on auditory nerve and behavioral response in children.
    Telmesani LM; Said NM
    Int J Pediatr Otorhinolaryngol; 2015 May; 79(5):660-5. PubMed ID: 25746517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the spread of electric field on neural excitation in cochlear implant users: Transimpedance and spread of excitation measurements.
    Kopsch AC; Rahne T; Plontke SK; Wagner L
    Hear Res; 2022 Oct; 424():108591. PubMed ID: 35914395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraoperative Electrically Evoked Compound Action Potential Growth and Maximum Amplitudes in Hearing Preservation Cochlear Implant Recipients.
    Mussoi BS; Woodson E; Sydlowski S
    Otol Neurotol; 2023 Apr; 44(4):e216-e222. PubMed ID: 36946363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiologic effects of placing cochlear implant electrodes in a perimodiolar position in young children.
    Wackym PA; Firszt JB; Gaggl W; Runge-Samuelson CL; Reeder RM; Raulie JC
    Laryngoscope; 2004 Jan; 114(1):71-6. PubMed ID: 14709998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear Implantation with the CI512 and CI532 Precurved Electrode Arrays: One-Year Speech Recognition and Intraoperative Thresholds of Electrically Evoked Compound Action Potentials.
    Videhult Pierre P; Eklöf M; Smeds H; Asp F
    Audiol Neurootol; 2019; 24(6):299-308. PubMed ID: 31846976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.
    DeVries L; Scheperle R; Bierer JA
    J Assoc Res Otolaryngol; 2016 Jun; 17(3):237-52. PubMed ID: 26926152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants.
    Collins A; Foghsgaard S; Druce E; Margani V; Mejia O; O'Leary S
    Otol Neurotol; 2024 Mar; 45(3):238-244. PubMed ID: 38238914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Advanced Age on the Electrode-Neuron Interface in Cochlear Implant Users.
    Skidmore J; Carter BL; Riggs WJ; He S
    Ear Hear; 2022 Jul-Aug 01; 43(4):1300-1315. PubMed ID: 34935648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode Translocations in Perimodiolar Cochlear Implant Electrodes: Audiological and Electrophysiological Outcome.
    Liebscher T; Mewes A; Hoppe U; Hornung J; Brademann G; Hey M
    Z Med Phys; 2021 Aug; 31(3):265-275. PubMed ID: 32620321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.