BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38774957)

  • 21. Evolution of cochlear implant arrays result in changes in behavioral and physiological responses in children.
    Gordin A; Papsin B; James A; Gordon K
    Otol Neurotol; 2009 Oct; 30(7):908-15. PubMed ID: 19730148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.
    Schvartz-Leyzac KC; Pfingst BE
    Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types.
    Lee JY; Hong SH; Moon IJ; Kim EY; Baek E; Seol HY; Kang S
    J Audiol Otol; 2019 Jul; 23(3):145-152. PubMed ID: 31315391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intraindividual comparison of psychophysical parameters between perimodiolar and lateral-type electrode arrays in patients with bilateral cochlear implants.
    Jeong J; Kim M; Heo JH; Bang MY; Bae MR; Kim J; Choi JY
    Otol Neurotol; 2015 Feb; 36(2):228-34. PubMed ID: 25473955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying Cochlear Implant Channels With Relatively Poor Electrode-Neuron Interfaces Using the Electrically Evoked Compound Action Potential.
    Jahn KN; Arenberg JG
    Ear Hear; 2020; 41(4):961-973. PubMed ID: 31972772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responsiveness of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency.
    He S; Shahsavarani BS; McFayden TC; Wang H; Gill KE; Xu L; Chao X; Luo J; Wang R; He N
    Ear Hear; 2018; 39(2):238-250. PubMed ID: 28678078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of electrophysiological parameters between perimodiolar and lateral wall electrodes in paediatric cochlear implant users.
    Zarowski A; Molisz A; Mylanus EAM; Miserus JHM; Leblans M; van Dinther J; Siebert J; Offeciers EF
    Eur Arch Otorhinolaryngol; 2020 Oct; 277(10):2693-2699. PubMed ID: 32342198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the spread of excitation width correlated to the speech recognition in cochlear implant users?
    da Silva JC; Goffi-Gomez MVS; Magalhães AT; Tsuji RK; Bento RF
    Eur Arch Otorhinolaryngol; 2021 Jun; 278(6):1815-1820. PubMed ID: 32767167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2012; 33(3):367-76. PubMed ID: 22048258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Electrode to Modiolus Distance on Electrophysiological and Psychophysical Parameters in CI Patients With Perimodiolar and Lateral Electrode Arrays.
    Degen CV; Büchner A; Kludt E; Lenarz T
    Otol Neurotol; 2020 Oct; 41(9):e1091-e1097. PubMed ID: 32925843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better?
    Zhou N; Shi X; Dixit O; Firszt JB; Holden TA
    Heliyon; 2023 Feb; 9(2):e12467. PubMed ID: 36852047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):441-53. PubMed ID: 25658746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Electrode Location on Estimates of Neural Health in Humans with Cochlear Implants.
    Schvartz-Leyzac KC; Holden TA; Zwolan TA; Arts HA; Firszt JB; Buswinka CJ; Pfingst BE
    J Assoc Res Otolaryngol; 2020 Jun; 21(3):259-275. PubMed ID: 32342256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SpeedCAP: An Efficient Method for Estimating Neural Activation Patterns Using Electrically Evoked Compound Action-Potentials in Cochlear Implant Users.
    Garcia C; Deeks JM; Goehring T; Borsetto D; Bance M; Carlyon RP
    Ear Hear; 2023 May-Jun 01; 44(3):627-640. PubMed ID: 36477611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional spiraling finite element model of the electrically stimulated cochlea.
    Hanekom T
    Ear Hear; 2001 Aug; 22(4):300-15. PubMed ID: 11527037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the association of electrically-evoked compound action potential thresholds with inner-ear dimensions in pediatric cochlear implantation.
    Söderqvist S; Sivonen V; Lamminmäki S; Ylönen J; Markkola A; Sinkkonen ST
    Int J Pediatr Otorhinolaryngol; 2022 Jul; 158():111160. PubMed ID: 35544967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward a method of achieving balanced stimulation of bilateral auditory nerves: Evidence from children receiving matched and unmatched bilateral cochlear implants simultaneously.
    Tsai P; Wisener N; Papsin BC; Cushing SL; Gordon KA
    Hear Res; 2022 Mar; 416():108445. PubMed ID: 35104716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects.
    Eisen MD; Franck KH
    Ear Hear; 2004 Dec; 25(6):528-38. PubMed ID: 15604914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The distance from the modiolus of perimodiolar electrode arrays of cochlear implants.
    Perényi Á; Nagy R; Dimák B; Csanády M; Jóri J; Kiss JG; Rovó L
    Orv Hetil; 2019 Aug; 160(31):1216-1222. PubMed ID: 31352808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Effects of GJB2 or SLC26A4 Gene Mutations on Neural Response of the Electrically Stimulated Auditory Nerve in Children.
    Luo J; Xu L; Chao X; Wang R; Pellittieri A; Bai X; Fan Z; Wang H; He S
    Ear Hear; 2020; 41(1):194-207. PubMed ID: 31124793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.