These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38775109)

  • 1. Optimizing Transfection Efficiency in CAR-T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles.
    Giulimondi F; Digiacomo L; Renzi S; Cassone C; Pirrottina A; Molfetta R; Palamà IE; Maiorano G; Gigli G; Amenitsch H; Pozzi D; Zingoni A; Caracciolo G
    ACS Appl Bio Mater; 2024 Jun; 7(6):3746-3757. PubMed ID: 38775109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering.
    Billingsley MM; Singh N; Ravikumar P; Zhang R; June CH; Mitchell MJ
    Nano Lett; 2020 Mar; 20(3):1578-1589. PubMed ID: 31951421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of Plasmid DNA by Ionizable Lipid Nanoparticles to Induce CAR Expression in T Cells.
    Prazeres PHDM; Ferreira H; Costa PAC; da Silva W; Alves MT; Padilla M; Thatte A; Santos AK; Lobo AO; Sabino A; Del Puerto HL; Mitchell MJ; Guimaraes PPG
    Int J Nanomedicine; 2023; 18():5891-5904. PubMed ID: 37873551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Nanoparticles Prepared from Low-Molecular-Weight PEI and Low-Generation PAMAM for EGFRvIII-Chimeric Antigen Receptor Gene Loading and T-Cell Transient Modification.
    Yu Q; Zhang M; Chen Y; Chen X; Shi S; Sun K; Ye R; Zheng Y; Chen Y; Xu Y; Peng J
    Int J Nanomedicine; 2020; 15():483-495. PubMed ID: 32158206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials in Chimeric Antigen Receptor T-Cell Process Development.
    Cardle II; Cheng EL; Jensen MC; Pun SH
    Acc Chem Res; 2020 Sep; 53(9):1724-1738. PubMed ID: 32786336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo mRNA CAR T Cell Engineering via Targeted Ionizable Lipid Nanoparticles with Extrahepatic Tropism.
    Billingsley MM; Gong N; Mukalel AJ; Thatte AS; El-Mayta R; Patel SK; Metzloff AE; Swingle KL; Han X; Xue L; Hamilton AG; Safford HC; Alameh MG; Papp TE; Parhiz H; Weissman D; Mitchell MJ
    Small; 2024 Mar; 20(11):e2304378. PubMed ID: 38072809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfection efficiencies of α-tocopherylated cationic gemini lipids with hydroxyethyl bearing headgroups under high serum conditions.
    Maiti B; Kamra M; Karande AA; Bhattacharya S
    Org Biomol Chem; 2018 Mar; 16(11):1983-1993. PubMed ID: 29498723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable pDNA/DODAB:MO lipoplexes: the effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency.
    Silva JP; Oliveira AC; Lúcio M; Gomes AC; Coutinho PJ; Oliveira ME
    Colloids Surf B Biointerfaces; 2014 Sep; 121():371-9. PubMed ID: 25023903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Engineering Chimeric Antigen Receptor Macrophages and T Cells by Lipid Nanoparticle-Mediated mRNA Delivery.
    Ye Z; Chen J; Zhao X; Li Y; Harmon J; Huang C; Chen J; Xu Q
    ACS Biomater Sci Eng; 2022 Feb; 8(2):722-733. PubMed ID: 35104103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigen Presenting Cell Mimetic Lipid Nanoparticles for Rapid mRNA CAR T Cell Cancer Immunotherapy.
    Metzloff AE; Padilla MS; Gong N; Billingsley MM; Han X; Merolle M; Mai D; Figueroa-Espada CG; Thatte AS; Haley RM; Mukalel AJ; Hamilton AG; Alameh MG; Weissman D; Sheppard NC; June CH; Mitchell MJ
    Adv Mater; 2024 Jun; 36(26):e2313226. PubMed ID: 38419362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection.
    Lou G; Anderluzzi G; Schmidt ST; Woods S; Gallorini S; Brazzoli M; Giusti F; Ferlenghi I; Johnson RN; Roberts CW; O'Hagan DT; Baudner BC; Perrie Y
    J Control Release; 2020 Sep; 325():370-379. PubMed ID: 32619745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells.
    Billingsley MM; Hamilton AG; Mai D; Patel SK; Swingle KL; Sheppard NC; June CH; Mitchell MJ
    Nano Lett; 2022 Jan; 22(1):533-542. PubMed ID: 34669421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of lyophilized gemini surfactant-based gene delivery systems: influence of lyophilization on the structure, activity and stability of the lipoplexes.
    Mohammed-Saeid W; Michel D; El-Aneed A; Verrall RE; Low NH; Badea I
    J Pharm Pharm Sci; 2012; 15(4):548-67. PubMed ID: 23106958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of lipid-peptide nanoparticles prepared via microfluidics, reverse phase evaporation, and ouzo techniques for efficient plasmid DNA delivery.
    Mashal M; Attia N; Maldonado I; Enríquez Rodríguez L; Gallego I; Puras G; Pedraz JL
    Eur J Pharm Biopharm; 2024 Aug; 201():114385. PubMed ID: 38945408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy.
    Muñoz-Úbeda M; Misra SK; Barrán-Berdón AL; Datta S; Aicart-Ramos C; Castro-Hartmann P; Kondaiah P; Junquera E; Bhattacharya S; Aicart E
    Biomacromolecules; 2012 Dec; 13(12):3926-37. PubMed ID: 23130552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for Improving Immune Cell Transfection.
    Kumar ARK; Shou Y; Chan B; L K; Tay A
    Adv Mater; 2021 May; 33(21):e2007421. PubMed ID: 33860598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition.
    Pozzi D; Marchini C; Cardarelli F; Salomone F; Coppola S; Montani M; Zabaleta ME; Digman MA; Gratton E; Colapicchioni V; Caracciolo G
    Biochim Biophys Acta; 2014 Mar; 1838(3):957-67. PubMed ID: 24296066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delineating effect of headgroup and preparation method on transfection versus toxicity of DNA-loaded lipid nanocarriers.
    Saraswat A; Patel K
    Nanomedicine (Lond); 2023 Nov; 18(26):1921-1940. PubMed ID: 38078422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Insights into the Superior DNA Delivery Efficiency of Multicomponent Lipid Nanoparticles: An In Vitro and In Vivo Study.
    Quagliarini E; Wang J; Renzi S; Cui L; Digiacomo L; Ferri G; Pesce L; De Lorenzi V; Matteoli G; Amenitsch H; Masuelli L; Bei R; Pozzi D; Amici A; Cardarelli F; Marchini C; Caracciolo G
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56666-56677. PubMed ID: 36524967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized DNA electroporation for primary human T cell engineering.
    Zhang Z; Qiu S; Zhang X; Chen W
    BMC Biotechnol; 2018 Jan; 18(1):4. PubMed ID: 29378552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.