These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38775494)

  • 1. Glycosylated Polyhydroxyproline Is a Potent Antifreeze Molecule.
    McPartlon TJ; Osborne CT; Kramer JR
    Biomacromolecules; 2024 Jun; 25(6):3325-3334. PubMed ID: 38775494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"?
    Biggs CI; Stubbs C; Graham B; Fayter AER; Hasan M; Gibson MI
    Macromol Biosci; 2019 Jul; 19(7):e1900082. PubMed ID: 31087781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1D Self-Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide-Functionalized Perylene Bisimides.
    Adam MK; Jarrett-Wilkins C; Beards M; Staykov E; MacFarlane LR; Bell TDM; Matthews JM; Manners I; Faul CFJ; Moens PDJ; Ben RN; Wilkinson BL
    Chemistry; 2018 Jun; 24(31):7834-7839. PubMed ID: 29644728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of antifreeze glycoproteins and mimics.
    Garner J; Harding MM
    Chembiochem; 2010 Dec; 11(18):2489-98. PubMed ID: 21108270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules.
    Mitchell DE; Congdon T; Rodger A; Gibson MI
    Sci Rep; 2015 Oct; 5():15716. PubMed ID: 26499135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidic Antifreeze Materials: Prospects and Challenges.
    Surís-Valls R; Voets IK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL; Meister K; DeVries AL; Duman JG; Guo S; Bakker HJ; Voets IK
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3740-5. PubMed ID: 26936953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis.
    Tas RP; Hendrix MMRM; Voets IK
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2212456120. PubMed ID: 36595705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of short synthetic antifreeze peptides: Insights into ice-pinning mechanism.
    Gandini E; Sironi M; Pieraccini S
    J Mol Graph Model; 2020 Nov; 100():107680. PubMed ID: 32738619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti freeze proteins (Afp): Properties, sources and applications - A review.
    Baskaran A; Kaari M; Venugopal G; Manikkam R; Joseph J; Bhaskar PV
    Int J Biol Macromol; 2021 Oct; 189():292-305. PubMed ID: 34419548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity.
    Chao H; DeLuca CI; Davies PL
    FEBS Lett; 1995 Jan; 357(2):183-6. PubMed ID: 7805887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity.
    Mitchell DE; Clarkson G; Fox DJ; Vipond RA; Scott P; Gibson MI
    J Am Chem Soc; 2017 Jul; 139(29):9835-9838. PubMed ID: 28715207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation.
    Capicciotti CJ; Poisson JS; Boddy CN; Ben RN
    Cryobiology; 2015 Apr; 70(2):79-89. PubMed ID: 25595636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
    Nagel L; Plattner C; Budke C; Majer Z; DeVries AL; Berkemeier T; Koop T; Sewald N
    Amino Acids; 2011 Aug; 41(3):719-32. PubMed ID: 21603949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics.
    Gibson MI; Barker CA; Spain SG; Albertin L; Cameron NR
    Biomacromolecules; 2009 Feb; 10(2):328-33. PubMed ID: 19072300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrot 'antifreeze' protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization.
    Wang Y; Graham LA; Han Z; Eves R; Gruneberg AK; Campbell RL; Zhang H; Davies PL
    Biochem J; 2020 Jun; 477(12):2179-2192. PubMed ID: 32459306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).
    Congdon TR; Notman R; Gibson MI
    Biomacromolecules; 2016 Sep; 17(9):3033-9. PubMed ID: 27476873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
    Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN
    J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A carrot leucine-rich-repeat protein that inhibits ice recrystallization.
    Worrall D; Elias L; Ashford D; Smallwood M; Sidebottom C; Lillford P; Telford J; Holt C; Bowles D
    Science; 1998 Oct; 282(5386):115-7. PubMed ID: 9756474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.