These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38775670)

  • 1. Two-Stage Training Framework Using Multicontrast MRI Radiomics for
    Truong NCD; Bangalore Yogananda CG; Wagner BC; Holcomb JM; Reddy D; Saadat N; Hatanpaa KJ; Patel TR; Fei B; Lee MD; Jain R; Bruce RJ; Pinho MC; Madhuranthakam AJ; Maldjian JA
    Radiol Artif Intell; 2024 Jul; 6(4):e230218. PubMed ID: 38775670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas.
    Zhou H; Chang K; Bai HX; Xiao B; Su C; Bi WL; Zhang PJ; Senders JT; Vallières M; Kavouridis VK; Boaro A; Arnaout O; Yang L; Huang RY
    J Neurooncol; 2019 Apr; 142(2):299-307. PubMed ID: 30661193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: a consecutive L-[methyl-11C] methionine cohort study with two PET scanners.
    Zhou W; Wen J; Huang Q; Zeng Y; Zhou Z; Zhu Y; Chen L; Guan Y; Xie F; Zhuang D; Hua T
    Eur J Nucl Med Mol Imaging; 2024 Apr; 51(5):1423-1435. PubMed ID: 38110710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes.
    Foltyn-Dumitru M; Schell M; Rastogi A; Sahm F; Kessler T; Wick W; Bendszus M; Brugnara G; Vollmuth P
    Eur Radiol; 2024 Apr; 34(4):2782-2790. PubMed ID: 37672053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas.
    Zhang H; Ouyang Y; Zhang H; Zhang Y; Su R; Zhou B; Yang W; Lei Y; Huang B
    Clin Radiol; 2024 May; 79(5):e682-e691. PubMed ID: 38402087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-Based Deep Learning Method for Classification of IDH Mutation Status.
    Bangalore Yogananda CG; Wagner BC; Truong NCD; Holcomb JM; Reddy DD; Saadat N; Hatanpaa KJ; Patel TR; Fei B; Lee MD; Jain R; Bruce RJ; Pinho MC; Madhuranthakam AJ; Maldjian JA
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.
    Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S
    BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics.
    Choi YS; Bae S; Chang JH; Kang SG; Kim SH; Kim J; Rim TH; Choi SH; Jain R; Lee SK
    Neuro Oncol; 2021 Feb; 23(2):304-313. PubMed ID: 32706862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study.
    Lu J; Xu W; Chen X; Wang T; Li H
    Magn Reson Imaging; 2023 Dec; 104():72-79. PubMed ID: 37778708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Isocitrate Dehydrogenase (IDH) Mutation Status in Gliomas Using Multiparameter MRI Radiomics Features.
    Peng H; Huo J; Li B; Cui Y; Zhang H; Zhang L; Ma L
    J Magn Reson Imaging; 2021 May; 53(5):1399-1407. PubMed ID: 33179832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas.
    Zhang B; Chang K; Ramkissoon S; Tanguturi S; Bi WL; Reardon DA; Ligon KL; Alexander BM; Wen PY; Huang RY
    Neuro Oncol; 2017 Jan; 19(1):109-117. PubMed ID: 27353503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma.
    Yu J; Shi Z; Lian Y; Li Z; Liu T; Gao Y; Wang Y; Chen L; Mao Y
    Eur Radiol; 2017 Aug; 27(8):3509-3522. PubMed ID: 28004160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status.
    Park CJ; Choi YS; Park YW; Ahn SS; Kang SG; Chang JH; Kim SH; Lee SK
    Neuroradiology; 2020 Mar; 62(3):319-326. PubMed ID: 31820065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing predictability of IDH mutation status in glioma patients at initial diagnosis: a comparative analysis of radiomics from MRI, [
    Kaiser L; Quach S; Zounek AJ; Wiestler B; Zatcepin A; Holzgreve A; Bollenbacher A; Bartos LM; Ruf VC; Böning G; Thon N; Herms J; Riemenschneider MJ; Stöcklein S; Brendel M; Rupprecht R; Tonn JC; Bartenstein P; von Baumgarten L; Ziegler S; Albert NL
    Eur J Nucl Med Mol Imaging; 2024 Jul; 51(8):2371-2381. PubMed ID: 38396261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Radiomics Analyses Based on Different Magnetic Resonance Imaging Sequences in Grading and Molecular Genomic Typing of Glioma.
    Huang WY; Wen LH; Wu G; Hu MZ; Zhang CC; Chen F; Zhao JN
    J Comput Assist Tomogr; 2021 Jan-Feb 01; 45(1):110-120. PubMed ID: 33475317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.