These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 387757)

  • 21. Active site structure and stereospecificity of Escherichia coli pyridoxine-5'-phosphate oxidase.
    di Salvo ML; Ko TP; Musayev FN; Raboni S; Schirch V; Safo MK
    J Mol Biol; 2002 Jan; 315(3):385-97. PubMed ID: 11786019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of rat liver RNA polymerases I and II and yeast RNA polymerase I by pyrodixal 5'-phosphate. Evidence for the participation of lysyl residues at the active site.
    Martial J; Zaldivar J; Bull P; Venegas A; Valenzuela P
    Biochemistry; 1975 Nov; 14(22):4907-11. PubMed ID: 1101959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyridoxal 5'-phosphate mediated inactivation of Escherichia coli DNA polymerase I: identification of lysine-635 as an essential residue for the processive mode of DNA synthesis.
    Basu S; Basu A; Modak MJ
    Biochemistry; 1988 Sep; 27(18):6710-6. PubMed ID: 3143402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific modification of Escherichia coli DNA polymerase I large fragment with pyridoxal 5'-phosphate.
    Hazra AK; Detera-Wadleigh S; Wilson SH
    Biochemistry; 1984 Apr; 23(9):2073-8. PubMed ID: 6426512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Phenylalanyl-tRNA synthetase from E. coli MRE-600. Effect of chemical modification of lysine residues on the enzyme interaction with substrates].
    Gorshkova II; Datsiĩ II; Lavrik OI; Nevinskiĩ GA
    Biokhimiia; 1981 Apr; 46(4):699-707. PubMed ID: 6269660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-function relationship in Escherichia coli initiation factors. Identification of a lysine residue in the ribosomal binding site of initiation factor by site-specific chemical modification with pyridoxal phosphate.
    Ohsawa H; Gualerzi C
    J Biol Chem; 1981 May; 256(10):4905-12. PubMed ID: 7014565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of yeast fatty acid synthetase by modifying the beta-ketoacyl reductase active lysine residue with pyridoxal 5'-phosphate.
    Shoukry S; Stoops JK; Wakil SJ
    Arch Biochem Biophys; 1983 Oct; 226(1):224-30. PubMed ID: 6416172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical modification in situ of Escherichia coli 30 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the aminoacyl-tRNA and mRNA binding sites.
    Ohsawa H; Gualerzi C
    J Biol Chem; 1983 Jan; 258(1):150-6. PubMed ID: 6336745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of an essential amino group of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal phosphate and by pyridoxal phosphate-sensitized photooxidation.
    Podesta FE; Iglesias AA; Andreo CS
    Arch Biochem Biophys; 1986 May; 246(2):546-53. PubMed ID: 3085590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and amino acid sequence of the deoxynucleoside triphosphate binding site in Escherichia coli DNA polymerase I.
    Basu A; Modak MJ
    Biochemistry; 1987 Mar; 26(6):1704-9. PubMed ID: 3297133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Labeling of specific lysine residues at the active site of glutamine synthetase.
    Colanduoni J; Villafranca JJ
    J Biol Chem; 1985 Dec; 260(28):15042-50. PubMed ID: 2415512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of horse muscle acylphosphatase by pyridoxal 5'-phosphate.
    Ramponi G; Manao G; Camici G; White GF
    Biochim Biophys Acta; 1975 Jun; 391(2):486-93. PubMed ID: 238607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Horse liver alcohol dehydrogenase. A study of the essential lysine residue.
    Chen SS; Engel PC
    Biochem J; 1975 Sep; 149(3):627-35. PubMed ID: 173294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyridoxal 5'-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase.
    Kempe TD; Stark GR
    J Biol Chem; 1975 Sep; 250(17):6861-9. PubMed ID: 239951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Chemical modification of the lysine residues of bacterial formate dehydrogenase].
    Popov VO; Tishkov VI; Daĭnichenko VV; Egorov AM
    Biokhimiia; 1983 May; 48(5):747-55. PubMed ID: 6409166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.
    Futaki S; Ueno H; Martinez del Pozo A; Pospischil MA; Manning JM; Ringe D; Stoddard B; Tanizawa K; Yoshimura T; Soda K
    J Biol Chem; 1990 Dec; 265(36):22306-12. PubMed ID: 2125047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent modification of the solubilized rat liver vitamin K-dependent carboxylase with pyridoxal-5'-phosphate.
    Kappel WK; Olson RE
    Arch Biochem Biophys; 1984 Dec; 235(2):521-8. PubMed ID: 6440487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site.
    Kazarinoff MN; Snell EE
    J Biol Chem; 1976 Oct; 251(20):6179-82. PubMed ID: 789365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphasic inactivation of procine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate.
    Wimmer MJ; Mo T; Sawyers DL; Harrison JH
    J Biol Chem; 1975 Jan; 250(2):710-5. PubMed ID: 1112783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of microbial pyridoxal kinase by pyridoxal.
    Furukawa Y; Yamada R; Iwashima A
    Acta Vitaminol Enzymol; 1981; 3(3):145-56. PubMed ID: 6289642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.