BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38775737)

  • 1. Kinetic Characterization and Identification of Key Active Site Residues of the L-Aspartate N-Hydroxylase, CreE.
    Johnson SB; Valentino H; Sobrado P
    Chembiochem; 2024 May; ():e202400350. PubMed ID: 38775737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of a flavin-dependent S-monooxygenase from garlic (
    Valentino H; Campbell AC; Schuermann JP; Sultana N; Nam HG; LeBlanc S; Tanner JJ; Sobrado P
    J Biol Chem; 2020 Aug; 295(32):11042-11055. PubMed ID: 32527723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biosynthetic aspartate N-hydroxylase performs successive oxidations by holding intermediates at a site away from the catalytic center.
    Rotilio L; Boverio A; Nguyen QT; Mannucci B; Fraaije MW; Mattevi A
    J Biol Chem; 2023 Jul; 299(7):104904. PubMed ID: 37302552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase.
    Johnson SB; Li H; Valentino H; Sobrado P
    Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Nitro-Forming Enzyme Involved in Fosfazinomycin Biosynthesis.
    Valentino H; Sobrado P
    Biochemistry; 2021 Sep; 60(38):2851-2864. PubMed ID: 34516102
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystal structure of the nitrosuccinate lyase CreD in complex with fumarate provides insights into the catalytic mechanism for nitrous acid elimination.
    Katsuyama Y; Sato Y; Sugai Y; Higashiyama Y; Senda M; Senda T; Ohnishi Y
    FEBS J; 2018 Apr; 285(8):1540-1555. PubMed ID: 29505698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping conformational states of a flavin-dependent
    Campbell AC; Stiers KM; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2020 Sep; 295(38):13239-13249. PubMed ID: 32723870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.
    Shirey C; Badieyan S; Sobrado P
    J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis.
    Perkins SW; Hlaing MZ; Hicks KA; Rajakovich LJ; Snider MJ
    Biochemistry; 2023 May; 62(10):1553-1567. PubMed ID: 37130364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroperoxyflavin-mediated oxidations of organosulfur compounds. Model studies for the flavin monooxygenase.
    Doerge DR; Corbett MD
    Mol Pharmacol; 1984 Sep; 26(2):348-52. PubMed ID: 6548293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.
    Romero E; Fedkenheuer M; Chocklett SW; Qi J; Oppenheimer M; Sobrado P
    Biochim Biophys Acta; 2012 Jun; 1824(6):850-7. PubMed ID: 22465572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
    Campbell AC; Robinson R; Mena-Aguilar D; Sobrado P; Tanner JJ
    Biochemistry; 2020 Dec; 59(48):4609-4616. PubMed ID: 33226785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for flavin movement in the function of p-hydroxybenzoate hydroxylase from studies of the mutant Arg220Lys.
    Moran GR; Entsch B; Palfey BA; Ballou DP
    Biochemistry; 1996 Jul; 35(28):9278-85. PubMed ID: 8703933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA.
    Pimviriyakul P; Thotsaporn K; Sucharitakul J; Chaiyen P
    J Biol Chem; 2017 Mar; 292(12):4818-4832. PubMed ID: 28159841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.