These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38775904)

  • 61. An Improved Deep Residual Network-Based Semantic Simultaneous Localization and Mapping Method for Monocular Vision Robot.
    Ni J; Gong T; Gu Y; Zhu J; Fan X
    Comput Intell Neurosci; 2020; 2020():7490840. PubMed ID: 32104171
    [TBL] [Abstract][Full Text] [Related]  

  • 62. EndoAbS dataset: Endoscopic abdominal stereo image dataset for benchmarking 3D stereo reconstruction algorithms.
    Penza V; Ciullo AS; Moccia S; Mattos LS; De Momi E
    Int J Med Robot; 2018 Oct; 14(5):e1926. PubMed ID: 29968295
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SLAM and 3D Semantic Reconstruction Based on the Fusion of Lidar and Monocular Vision.
    Lou L; Li Y; Zhang Q; Wei H
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772544
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Using a passive coordinate measurement arm for motion tracking of a rigid endoscope for augmented-reality image-guided surgery.
    Lapeer RJ; Jeffrey SJ; Dao JT; GarcĂ­a GG; Chen M; Shickell SM; Rowland RS; Philpott CM
    Int J Med Robot; 2014 Mar; 10(1):65-77. PubMed ID: 23712957
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Real-to-virtual domain transfer-based depth estimation for real-time 3D annotation in transnasal surgery: a study of annotation accuracy and stability.
    Tong HS; Ng YL; Liu Z; Ho JDL; Chan PL; Chan JYK; Kwok KW
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):731-739. PubMed ID: 33786777
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sparse-to-dense coarse-to-fine depth estimation for colonoscopy.
    Liu R; Liu Z; Lu J; Zhang G; Zuo Z; Sun B; Zhang J; Sheng W; Guo R; Zhang L; Hua X
    Comput Biol Med; 2023 Jun; 160():106983. PubMed ID: 37187133
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Robust Parallel Initialization Method for Monocular Visual-Inertial SLAM.
    Zhong M; Yao Y; Xu X; Wei H
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366008
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Scene-graph-driven semantic feature matching for monocular digestive endoscopy.
    Yang Z; Pan J; Li R; Qin H
    Comput Biol Med; 2022 Jul; 146():105616. PubMed ID: 35605485
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy.
    Zhang X; Wang J; Wang T; Ji X; Shen Y; Sun Z; Zhang X
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1285-1294. PubMed ID: 31016562
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Monocular endoscope 6-DoF tracking with constrained evolutionary stochastic filtering.
    Luo X; Xie L; Zeng HQ; Wang X; Li S
    Med Image Anal; 2023 Oct; 89():102928. PubMed ID: 37603943
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sensor fusion of monocular cameras and laser rangefinders for line-based Simultaneous Localization and Mapping (SLAM) tasks in autonomous mobile robots.
    Zhang X; Rad AB; Wong YK
    Sensors (Basel); 2012; 12(1):429-52. PubMed ID: 22368478
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Novel Approach for Lidar-Based Robot Localization in a Scale-Drifted Map Constructed Using Monocular SLAM.
    Wang S; Kobayashi Y; Ravankar AA; Ravankar A; Emaru T
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091810
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhanced imaging colonoscopy facilitates dense motion-based 3D reconstruction.
    Alcantarilla PF; Bartoli A; Chadebecq F; Tilmant C; Lepilliez V
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7346-9. PubMed ID: 24111442
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of three-dimensional visualisation on performance in endoscopic sinus surgery: A clinical training study using surgical navigation for movement analysis in a randomised crossover design.
    Ten Dam E; Helder HM; van der Laan BFAM; Feijen RA; Korsten-Meijer AGW
    Clin Otolaryngol; 2020 Mar; 45(2):211-220. PubMed ID: 31846558
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Research on SLAM Road Sign Observation Based on Particle Filter.
    Wang Y; Wang X
    Comput Intell Neurosci; 2022; 2022():4478978. PubMed ID: 35928027
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Real-time dense stereo reconstruction using convex optimisation with a cost-volume for image-guided robotic surgery.
    Chang PL; Stoyanov D; Davison AJ; Edwards PE
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):42-9. PubMed ID: 24505647
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Monocular SLAM for autonomous robots with enhanced features initialization.
    Guerra E; Munguia R; Grau A
    Sensors (Basel); 2014 Apr; 14(4):6317-37. PubMed ID: 24699284
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Implementation, calibration and accuracy testing of an image-enhanced endoscopy system.
    Shahidi R; Bax MR; Maurer CR; Johnson JA; Wilkinson EP; Wang B; West JB; Citardi MJ; Manwaring KH; Khadem R
    IEEE Trans Med Imaging; 2002 Dec; 21(12):1524-35. PubMed ID: 12588036
    [TBL] [Abstract][Full Text] [Related]  

  • 79. CVIDS: A Collaborative Localization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial SLAM.
    Zhang T; Zhang L; Chen Y; Zhou Y
    IEEE Trans Image Process; 2022; 31():6562-6576. PubMed ID: 36240038
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes.
    Zhang XY; Abd Rahman AH; Qamar F
    PeerJ Comput Sci; 2023; 9():e1628. PubMed ID: 37869467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.