BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38776126)

  • 21. Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells.
    Xue B; Xiao K; Wang Y; Tian Z
    J Proteomics; 2020 Feb; 212():103594. PubMed ID: 31759178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient enrichment method for human plasma glycoproteome analyses using tandem hydrophilic interaction liquid chromatography workflow.
    Jie J; Liu D; Yang B; Zou X
    J Chromatogr A; 2020 Jan; 1610():460546. PubMed ID: 31570191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site- and structure-specific characterization of the human urinary N-glycoproteome with site-determining and structure-diagnostic product ions.
    Shen Y; Xiao K; Tian Z
    Rapid Commun Mass Spectrom; 2021 Jan; 35(1):e8952. PubMed ID: 32965048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics.
    Meier F; Park MA; Mann M
    Mol Cell Proteomics; 2021; 20():100138. PubMed ID: 34416385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward Automated N-Glycopeptide Identification in Glycoproteomics.
    Lee LY; Moh ES; Parker BL; Bern M; Packer NH; Thaysen-Andersen M
    J Proteome Res; 2016 Oct; 15(10):3904-3915. PubMed ID: 27519006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-pipeline approach achieving glycoprotein identification and obtaining intact glycopeptide information by tandem mass spectrometry.
    Chen Y; Liu M; Yan G; Lu H; Yang P
    Mol Biosyst; 2010 Dec; 6(12):2417-22. PubMed ID: 20886165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Need for Community Standards to Enable Accurate Comparison of Glycoproteomics Algorithm Performance.
    Hackett WE; Zaia J
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry.
    Cao Q; Zhao X; Zhao Q; Lv X; Ma C; Li X; Zhao Y; Peng B; Ying W; Qian X
    Anal Chem; 2014 Jul; 86(14):6804-11. PubMed ID: 24914453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD.
    Halim A; Nilsson J; Rüetschi U; Hesse C; Larson G
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.013649. PubMed ID: 22171320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated strategy for high-sensitive and multi-level glycoproteome analysis from low micrograms of protein samples.
    Gao W; Li H; Liu L; Huang P; Wang Z; Chen W; Ye M; Yu X; Tian R
    J Chromatogr A; 2019 Aug; 1600():46-54. PubMed ID: 31036360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycoproteomics: A Balance between High-Throughput and In-Depth Analysis.
    Yang Y; Franc V; Heck AJR
    Trends Biotechnol; 2017 Jul; 35(7):598-609. PubMed ID: 28527536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics.
    Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H
    Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated glycopeptide analysis--review of current state and future directions.
    Dallas DC; Martin WF; Hua S; German JB
    Brief Bioinform; 2013 May; 14(3):361-74. PubMed ID: 22843980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycomics-Assisted Glycoproteomics Enables Deep and Unbiased N-Glycoproteome Profiling of Complex Biological Specimens.
    Chau TH; Chernykh A; Ugonotti J; Parker BL; Kawahara R; Thaysen-Andersen M
    Methods Mol Biol; 2023; 2628():235-263. PubMed ID: 36781790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity Matters: Optimal Collision Energies for Tandem Mass Spectrometric Analysis of a Large Set of N-Glycopeptides.
    Hevér H; Nagy K; Xue A; Sugár S; Komka K; Vékey K; Drahos L; Révész Á
    J Proteome Res; 2022 Nov; 21(11):2743-2753. PubMed ID: 36201757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC.
    Totten SM; Feasley CL; Bermudez A; Pitteri SJ
    J Proteome Res; 2017 Mar; 16(3):1249-1260. PubMed ID: 28199111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-Lectin Affinity Chromatography for Separation, Identification, and Quantitation of Intact Protein Glycoforms in Complex Biological Mixtures.
    Totten SM; Kullolli M; Pitteri SJ
    Methods Mol Biol; 2017; 1550():99-113. PubMed ID: 28188526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glyco-DIA: a method for quantitative O-glycoproteomics with in silico-boosted glycopeptide libraries.
    Ye Z; Mao Y; Clausen H; Vakhrushev SY
    Nat Methods; 2019 Sep; 16(9):902-910. PubMed ID: 31384044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic examination of protein extraction, proteolytic glycopeptide enrichment and MS/MS fragmentation techniques for site-specific profiling of human milk N-glycoproteins.
    Kim BJ; Dallas DC
    Talanta; 2021 Mar; 224():121811. PubMed ID: 33379036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument.
    Guergues J; Wohlfahrt J; Stevens SM
    J Proteome Res; 2022 Aug; 21(8):2036-2044. PubMed ID: 35876248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.