BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38776138)

  • 1. The Critical Analysis of Membranes toward Sustainable and Efficient Vanadium Redox Flow Batteries.
    Ye J; Xia L; Li H; de Arquer FPG; Wang H
    Adv Mater; 2024 May; ():e2402090. PubMed ID: 38776138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex-Situ Evaluation of Commercial Polymer Membranes for Vanadium Redox Flow Batteries (VRFBs).
    Zhao N; Riley H; Song C; Jiang Z; Tsay KC; Neagu R; Shi Z
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33802914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review.
    Düerkop D; Widdecke H; Schilde C; Kunz U; Schmiemann A
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33803681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Vanadium Redox Flow Battery in Electrode.
    Hossain MH; Abdullah N; Tan KH; Saidur R; Mohd Radzi MA; Shafie S
    Chem Rec; 2024 Jan; 24(1):e202300092. PubMed ID: 37144668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TiO
    Palanisamy G; Oh TH
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.
    Sepehr F; Paddison SJ
    J Phys Chem A; 2015 Jun; 119(22):5749-61. PubMed ID: 25954916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes.
    Lutz C; Breuckmann M; Hampel S; Kreyenschmidt M; Ke X; Beuermann S; Schafner K; Turek T; Kunz U; Buzanich AG; Radtke M; Fittschen UEA
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane development for vanadium redox flow batteries.
    Schwenzer B; Zhang J; Kim S; Li L; Liu J; Yang Z
    ChemSusChem; 2011 Oct; 4(10):1388-406. PubMed ID: 22102992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Flexible Six-in-One Microsensor Embedded in a Vanadium Redox Flow Battery for Long-Term Monitoring.
    Lee CY; Chen CH; Chen YC; Fan KS
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patents on Membranes Based on Non-Fluorinated Polymers for Vanadium Redox Flow Batteries.
    Choi SW; Kim TH; Cha SH
    Recent Pat Nanotechnol; 2017 Jul; 11(2):123-129. PubMed ID: 27799030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized anion exchange membranes for vanadium redox flow batteries.
    Chen D; Hickner MA; Agar E; Kumbur EC
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7559-66. PubMed ID: 23799776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries.
    Lou X; Yuan D; Yu Y; Lei Y; Ding M; Sun Q; Jia C
    Chem Asian J; 2020 Aug; 15(15):2357-2363. PubMed ID: 32166875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of polybenzimidazolium membranes for use in vanadium redox flow batteries.
    Duburg JC; Chen B; Holdcroft S; Schmidt TJ; Gubler L
    J Mater Chem A Mater; 2024 Mar; 12(11):6387-6398. PubMed ID: 38481959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses.
    Noh C; Jung M; Henkensmeier D; Nam SW; Kwon Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36799-36809. PubMed ID: 29016108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.
    Kim S; Choi J; Choi C; Heo J; Kim DW; Lee JY; Hong YT; Jung HT; Kim HT
    Nano Lett; 2018 Jun; 18(6):3962-3968. PubMed ID: 29723474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery.
    Sha'rani SS; Nasef MM; Jusoh NWC; Isa EDM; Ali RR
    Sci Technol Adv Mater; 2024; 25(1):2300697. PubMed ID: 38249722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life Cycle Assessment of a Vanadium Redox Flow Battery.
    Weber S; Peters JF; Baumann M; Weil M
    Environ Sci Technol; 2018 Sep; 52(18):10864-10873. PubMed ID: 30132664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid Pretreatment to Enhance Proton Transport of a Polysulfone-Polyvinylpyrrolidone Membrane for Application in Vanadium Redox Flow Batteries.
    Wu C; Zhang J; Lu S; Xiang Y; Jiang SP
    Chempluschem; 2018 Oct; 83(10):909-914. PubMed ID: 31950611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membranes for redox flow battery applications.
    Prifti H; Parasuraman A; Winardi S; Lim TM; Skyllas-Kazacos M
    Membranes (Basel); 2012 Jun; 2(2):275-306. PubMed ID: 24958177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.