These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38776197)

  • 41. Prediction of drug response in multilayer networks based on fusion of multiomics data.
    Yu L; Zhou D; Gao L; Zha Y
    Methods; 2021 Aug; 192():85-92. PubMed ID: 32798653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers.
    Béal J; Pantolini L; Noël V; Barillot E; Calzone L
    PLoS Comput Biol; 2021 Jan; 17(1):e1007900. PubMed ID: 33507915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network.
    Jiang HJ; Huang YA; You ZH
    Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive anticancer drug response prediction based on a simple cell line-drug complex network model.
    Wei D; Liu C; Zheng X; Li Y
    BMC Bioinformatics; 2019 Jan; 20(1):44. PubMed ID: 30670007
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology.
    Acharya D; Mukhopadhyay A
    Brief Funct Genomics; 2024 Sep; 23(5):549-560. PubMed ID: 38600757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Predicting tumor drug sensitivity with multi-omics data].
    Yang C; Liu Z; Dai P; Zhang Y; Huang P; Lin Y; Xie L
    Sheng Wu Gong Cheng Xue Bao; 2022 Jun; 38(6):2201-2212. PubMed ID: 35786472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identifying subpathway signatures for individualized anticancer drug response by integrating multi-omics data.
    Xu Y; Dong Q; Li F; Xu Y; Hu C; Wang J; Shang D; Zheng X; Yang H; Zhang C; Shao M; Meng M; Xiong Z; Li X; Zhang Y
    J Transl Med; 2019 Aug; 17(1):255. PubMed ID: 31387579
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-task deep latent spaces for cancer survival and drug sensitivity prediction.
    Rintala TJ; Napolitano F; Fortino V
    Bioinformatics; 2024 Sep; 40(Suppl 2):ii182-ii189. PubMed ID: 39230696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. WMMDCA: Prediction of Drug Responses by Weight-Based Modular Mapping in Cancer Cell Lines.
    Wang S; Li J; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2733-2740. PubMed ID: 32142453
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction.
    Liu H; Wang F; Yu J; Pan Y; Gong C; Zhang L; Zhang L
    PLoS Comput Biol; 2024 Apr; 20(4):e1012012. PubMed ID: 38574114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks.
    Liu H; Peng W; Dai W; Lin J; Fu X; Liu L; Liu L; Yu N
    Methods; 2024 Feb; 222():41-50. PubMed ID: 38157919
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses.
    López-Cortés A; Cabrera-Andrade A; Echeverría-Garcés G; Echeverría-Espinoza P; Pineda-Albán M; Elsitdie N; Bueno-Miño J; Cruz-Segundo CM; Dorado J; Pazos A; Gonzáles-Díaz H; Pérez-Castillo Y; Tejera E; Munteanu CR
    Sci Rep; 2024 Aug; 14(1):19359. PubMed ID: 39169044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
    Turki T; Wei Z; Wang JTL
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. scMIC: A Deep Multi-Level Information Fusion Framework for Clustering Single-Cell Multi-Omics Data.
    Zhan Y; Liu J; Ou-Yang L
    IEEE J Biomed Health Inform; 2023 Dec; 27(12):6121-6132. PubMed ID: 37725723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.