These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38776201)

  • 1. Wearable Surface Deformation Myography (sDMG) System for Recognition of Locomotion Modes.
    Sun H; Peng X; Wang J; Liu J; Fu T; He C
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4577-4587. PubMed ID: 38776201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Iontronic FMG for Classification of Muscular Locomotion.
    Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI-Enabled Soft Sensing Array for Simultaneous Detection of Muscle Deformation and Mechanomyography for Metaverse Somatosensory Interaction.
    Suo J; Liu Y; Wang J; Chen M; Wang K; Yang X; Yao K; Roy VAL; Yu X; Daoud WA; Liu N; Wang J; Wang Z; Li WJ
    Adv Sci (Weinh); 2024 Apr; 11(16):e2305025. PubMed ID: 38376001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotion mode classification using a wearable capacitive sensing system.
    Chen B; Zheng E; Fan X; Liang T; Wang Q; Wei K; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):744-55. PubMed ID: 23694674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A locomotion intent prediction system based on multi-sensor fusion.
    Chen B; Zheng E; Wang Q
    Sensors (Basel); 2014 Jul; 14(7):12349-69. PubMed ID: 25014097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors.
    Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A
    IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees.
    Zheng E; Wang L; Wei K; Wang Q
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Force Myography Research and Development.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton.
    Tang J; Zhao L; Wu M; Jiang Z; Cao J; Bao X
    PeerJ Comput Sci; 2024; 10():e1881. PubMed ID: 38435551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification.
    Joshi D; Nakamura BH; Hahn ME
    Med Eng Phys; 2015 May; 37(5):518-24. PubMed ID: 25862333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion.
    Liu YX; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1089-1098. PubMed ID: 34097615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction.
    Huang P; Wang H; Wang Y; Liu Z; Samuel OW; Yu M; Li X; Chen S; Li G
    Comput Math Methods Med; 2020; 2020():5694265. PubMed ID: 32351614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower limb wearable capacitive sensing and its applications to recognizing human gaits.
    Zheng E; Chen B; Wei K; Wang Q
    Sensors (Basel); 2013 Oct; 13(10):13334-55. PubMed ID: 24084122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control.
    Haque MR; Islam MR; Sazonov E; Shen X
    Front Robot AI; 2024; 11():1267072. PubMed ID: 38680622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.