BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38776376)

  • 1. A guiding light for stimulating paralyzed muscles.
    Williams J
    Sci Robot; 2024 May; 9(90):eado9987. PubMed ID: 38776376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-loop optogenetic neuromodulation enables high-fidelity fatigue-resistant muscle control.
    Herrera-Arcos G; Song H; Yeon SH; Ghenand O; Gutierrez-Arango S; Sinha S; Herr H
    Sci Robot; 2024 May; 9(90):eadi8995. PubMed ID: 38776378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-contraction of antagonist muscles during knee extension against gravity: insights for functional electrical stimulation control design.
    Lynch CL; Sayenko D; Popovic MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1843-6. PubMed ID: 23366271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile properties of human thenar muscles paralyzed by spinal cord injury.
    Thomas CK
    Muscle Nerve; 1997 Jul; 20(7):788-99. PubMed ID: 9179150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation pattern that maximizes force in paralyzed and control whole thenar muscles.
    Griffin L; Godfrey S; Thomas CK
    J Neurophysiol; 2002 May; 87(5):2271-8. PubMed ID: 11976366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.
    van Bremen T; Send T; Sasse P; Bruegmann T
    J Muscle Res Cell Motil; 2017 Aug; 38(3-4):331-337. PubMed ID: 28918572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic skeletal muscle-powered adaptive biological machines.
    Raman R; Cvetkovic C; Uzel SG; Platt RJ; Sengupta P; Kamm RD; Bashir R
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3497-502. PubMed ID: 26976577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic activation of muscle contraction
    Ganji E; Chan CS; Ward CW; Killian ML
    Connect Tissue Res; 2021 Jan; 62(1):15-23. PubMed ID: 32777957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the clinical translation of optogenetic skeletal muscle stimulation.
    Gundelach LA; Hüser MA; Beutner D; Ruther P; Bruegmann T
    Pflugers Arch; 2020 May; 472(5):527-545. PubMed ID: 32415463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nerve clamp electrode design for indirect stimulation of skeletal muscle.
    Hilmas CJ; Scherer JW; Williams PT
    Biotechniques; 2010 Oct; 49(4):739-44. PubMed ID: 20964634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad.
    Vajtay TJ; Bandi A; Upadhyay A; Swerdel MR; Hart RP; Lee CR; Margolis DJ
    J Neurophysiol; 2019 Apr; 121(4):1491-1500. PubMed ID: 30785807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice.
    Bryson JB; Machado CB; Crossley M; Stevenson D; Bros-Facer V; Burrone J; Greensmith L; Lieberam I
    Science; 2014 Apr; 344(6179):94-7. PubMed ID: 24700859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered muscle systems having individually addressable distributed muscle actuators controlled by optical stimuli.
    Neal D; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():326-9. PubMed ID: 24109690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve.
    Salmons S; Jarvis JC
    Med Eng Phys; 2007 Jul; 29(6):728. PubMed ID: 16997607
    [No Abstract]   [Full Text] [Related]  

  • 18. Control method for bio-actuators based on muscle contraction model
    Hagiwara M; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.
    Häger-Ross CK; Klein CS; Thomas CK
    J Neurophysiol; 2006 Jul; 96(1):165-74. PubMed ID: 16611836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transdermal optogenetic peripheral nerve stimulation.
    Maimon BE; Zorzos AN; Bendell R; Harding A; Fahmi M; Srinivasan S; Calvaresi P; Herr HM
    J Neural Eng; 2017 Jun; 14(3):034002. PubMed ID: 28157088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.