These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38776417)

  • 1. Loss of ATP-Sensitive Potassium Channel Expression and Function in the Nervous System Decreases Opioid Sensitivity in a High-Fat Diet-Fed Mouse Model of Diet-Induced Obesity.
    Fisher C; Johnson K; Moore M; Sadrati A; Janecek JL; Graham ML; Klein AH
    Diabetes; 2024 Aug; 73(8):1244-1254. PubMed ID: 38776417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of ATP-sensitive channel expression and function decreases opioid sensitivity in a mouse model of type 2 diabetes.
    Fisher C; Johnson K; Moore M; Sadrati A; Janecek JL; Graham ML; Klein AH
    bioRxiv; 2023 Sep; ():. PubMed ID: 37732180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy.
    Zoga V; Kawano T; Liang MY; Bienengraeber M; Weihrauch D; McCallum B; Gemes G; Hogan Q; Sarantopoulos C
    Mol Pain; 2010 Jan; 6():6. PubMed ID: 20102598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.
    Martin GM; Rex EA; Devaraneni P; Denton JS; Boodhansingh KE; DeLeon DD; Stanley CA; Shyng SL
    J Biol Chem; 2016 Oct; 291(42):21971-21983. PubMed ID: 27573238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of SUR1 K
    Luu W; Bjork J; Salo E; Entenmann N; Jurgenson T; Fisher C; Klein AH
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.
    Li CG; Cui WY; Wang H
    Acta Pharmacol Sin; 2016 Jan; 37(1):134-42. PubMed ID: 26725741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K
    Sikimic J; McMillen TS; Bleile C; Dastvan F; Quast U; Krippeit-Drews P; Drews G; Bryan J
    J Biol Chem; 2019 Mar; 294(10):3707-3719. PubMed ID: 30587573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac K
    Vedovato N; Rorsman O; Hennis K; Ashcroft FM; Proks P
    J Physiol; 2018 Dec; 596(24):6205-6217. PubMed ID: 30179258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of an open K
    Driggers CM; Kuo YY; Zhu P; ElSheikh A; Shyng SL
    Nat Commun; 2024 Mar; 15(1):2502. PubMed ID: 38509107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-sensitive K(+) channels in rat colonic epithelium.
    Pouokam E; Bader S; Brück B; Schmidt B; Diener M
    Pflugers Arch; 2013 Jun; 465(6):865-77. PubMed ID: 23262522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life.
    Vedovato N; Salguero MV; Greeley SAW; Yu CH; Philipson LH; Ashcroft FM
    Diabetologia; 2024 May; 67(5):940-951. PubMed ID: 38366195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for Characterizing Disease-Associated ATP-Sensitive Potassium Channel Mutations.
    Kandasamy B; Shyng SL
    Methods Mol Biol; 2018; 1684():85-104. PubMed ID: 29058186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-radioactive Rb
    ElSheikh A; Driggers CM; Shyng SL
    Methods Mol Biol; 2024; 2796():191-210. PubMed ID: 38856903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine Efficacy, Tolerance, and Hypersensitivity Are Altered After Modulation of SUR1 Subtype K
    Fisher C; Johnson K; Okerman T; Jurgenson T; Nickell A; Salo E; Moore M; Doucette A; Bjork J; Klein AH
    Front Neurosci; 2019; 13():1122. PubMed ID: 31695594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy.
    Driggers CM; Shyng SL
    Methods Enzymol; 2021; 653():121-150. PubMed ID: 34099169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload.
    Hu X; Xu X; Huang Y; Fassett J; Flagg TP; Zhang Y; Nichols CG; Bache RJ; Chen Y
    Circ Res; 2008 Oct; 103(9):1009-17. PubMed ID: 18802029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbamazepine promotes surface expression of mutant Kir6.2-A28V ATP-sensitive potassium channels by modulating Golgi retention and autophagy.
    Lin CH; Lin YC; Yang SB; Chen PC
    J Biol Chem; 2022 May; 298(5):101904. PubMed ID: 35398096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into K
    Pipatpolkai T; Usher S; Stansfeld PJ; Ashcroft FM
    Nat Rev Endocrinol; 2020 Jul; 16(7):378-393. PubMed ID: 32376986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KATP channel subunits are expressed in the epididymal epithelium in several mammalian species.
    Lybaert P; Vanbellinghen AM; Quertinmont E; Petein M; Meuris S; Lebrun P
    Biol Reprod; 2008 Aug; 79(2):253-61. PubMed ID: 18434629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates interaction of syntaxin-1A with sulfonylurea receptor 1 to regulate pancreatic β-cell ATP-sensitive potassium channels.
    Liang T; Xie L; Chao C; Kang Y; Lin X; Qin T; Xie H; Feng ZP; Gaisano HY
    J Biol Chem; 2014 Feb; 289(9):6028-40. PubMed ID: 24429282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.