These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38776602)

  • 21. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure.
    Lu Y; Cheng L; Yang Z; Li J; Zhu H
    PLoS One; 2020; 15(9):e0238471. PubMed ID: 32870933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity.
    Xie Y; Sun W; Yan F; Liu H; Deng Z; Cai L
    Int J Nanomedicine; 2019; 14():6019-6033. PubMed ID: 31534334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V.
    Shi C; Lu N; Qin Y; Liu M; Li H; Li H
    PLoS One; 2021; 16(3):e0247764. PubMed ID: 33661944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone tissue regeneration: the role of scaffold geometry.
    Zadpoor AA
    Biomater Sci; 2015 Feb; 3(2):231-45. PubMed ID: 26218114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration.
    Nie W; Gao Y; McCoul DJ; Gillispie GJ; Zhang Y; Liang L; He C
    Int J Nanomedicine; 2019; 14():3929-3941. PubMed ID: 31213809
    [No Abstract]   [Full Text] [Related]  

  • 26. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties.
    Li X; Wang Y; Zhang B; Yang H; Mushtaq RT; Liu M; Bao C; Shi Y; Luo Z; Zhang W
    Comput Methods Programs Biomed; 2022 Oct; 225():107059. PubMed ID: 35964422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability.
    Foroughi AH; Razavi MJ
    Acta Biomater; 2022 Jul; 146():317-340. PubMed ID: 35533924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of pore size and morphology in musculo-skeletal tissue regeneration.
    Perez RA; Mestres G
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():922-39. PubMed ID: 26838923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis.
    Wang H; Su K; Su L; Liang P; Ji P; Wang C
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of polycaprolactone scaffold permeability on bone regeneration in vivo.
    Mitsak AG; Kemppainen JM; Harris MT; Hollister SJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1831-9. PubMed ID: 21395465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration.
    Wang C; Xu D; Lin L; Li S; Hou W; He Y; Sheng L; Yi C; Zhang X; Li H; Li Y; Zhao W; Yu D
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112499. PubMed ID: 34857285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering.
    Lekhavadhani S; Shanmugavadivu A; Selvamurugan N
    Int J Biol Macromol; 2023 Nov; 251():126238. PubMed ID: 37567529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico assessment of the bone regeneration potential of complex porous scaffolds.
    Asbai-Ghoudan R; Nasello G; Pérez MÁ; Verbruggen SW; Ruiz de Galarreta S; Rodriguez-Florez N
    Comput Biol Med; 2023 Oct; 165():107381. PubMed ID: 37611419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Full physicochemical and biocompatibility characterization of a supercritical CO
    Souto-Lopes M; Grenho L; Manrique YA; Dias MM; Fernandes MH; Monteiro FJ; Salgado CL
    Biomater Adv; 2023 Mar; 146():213280. PubMed ID: 36682201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.