These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38776677)
41. Targeting the programmed cell death (PCD) signaling mechanism with natural substances for the treatment of diabetic cardiomyopathy (DCM). Xuan X; Zhang S Phytother Res; 2023 Dec; 37(12):5495-5508. PubMed ID: 37622685 [TBL] [Abstract][Full Text] [Related]
42. Mitochondria-Endoplasmic Reticulum Contacts: The Promising Regulators in Diabetic Cardiomyopathy. Chen Y; Xin Y; Cheng Y; Liu X Oxid Med Cell Longev; 2022; 2022():2531458. PubMed ID: 35450404 [TBL] [Abstract][Full Text] [Related]
43. Up-regulating autophagy by targeting the mTOR-4EBP1 pathway: a possible mechanism for improving cardiac function in mice with experimental dilated cardiomyopathy. Jin B; Shi H; Zhu J; Wu B; Geshang Q BMC Cardiovasc Disord; 2020 Feb; 20(1):56. PubMed ID: 32019530 [TBL] [Abstract][Full Text] [Related]
44. The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy. Wang S; Ding L; Ji H; Xu Z; Liu Q; Zheng Y Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27376265 [TBL] [Abstract][Full Text] [Related]
47. Metrnl ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling dependent on LKB1/AMPK/ULK1-mediated autophagy. Lu QB; Ding Y; Liu Y; Wang ZC; Wu YJ; Niu KM; Li KX; Zhang JR; Sun HJ J Adv Res; 2023 Sep; 51():161-179. PubMed ID: 36334887 [TBL] [Abstract][Full Text] [Related]
48. Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways. Yao J; Li Y; Jin Y; Chen Y; Tian L; He W Int Immunopharmacol; 2021 Jul; 96():107728. PubMed ID: 33971494 [TBL] [Abstract][Full Text] [Related]
49. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Zhang B; Wu H; Zhang J; Cong C; Zhang L Mol Cell Biochem; 2024 Jul; 479(7):1673-1696. PubMed ID: 38189880 [TBL] [Abstract][Full Text] [Related]
50. Spermine Regulates Immune and Signal Transduction Dysfunction in Diabetic Cardiomyopathy. Wei C; Sun M; Liang X; Che B; Wang N; Shi L; Fan Y Front Endocrinol (Lausanne); 2021; 12():740493. PubMed ID: 35173678 [TBL] [Abstract][Full Text] [Related]
51. Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice. Xiong Z; Li Y; Zhao Z; Zhang Y; Man W; Lin J; Dong Y; Liu L; Wang B; Wang H; Guo B; Li C; Li F; Wang H; Sun D Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165806. PubMed ID: 32320827 [TBL] [Abstract][Full Text] [Related]
52. CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Shao Y; Li M; Yu Q; Gong M; Wang Y; Yang X; Liu L; Liu D; Tan Z; Zhang Y; Qu Y; Li H; Wang Y; Jiao L; Zhang Y Eur J Pharmacol; 2022 May; 922():174915. PubMed ID: 35339477 [TBL] [Abstract][Full Text] [Related]
53. Associated Targets of the Antioxidant Cardioprotection of Shaher F; Qiu H; Wang S; Hu Y; Wang W; Zhang Y; Wei Y; Al-Ward H; Abdulghani MAM; Alenezi SK; Baldi S; Zhou S Biomed Res Int; 2020; 2020():7136075. PubMed ID: 32775437 [TBL] [Abstract][Full Text] [Related]
54. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Dhar A; Venkadakrishnan J; Roy U; Vedam S; Lalwani N; Ramos KS; Pandita TK; Bhat A Ther Adv Cardiovasc Dis; 2023; 17():17539447231210170. PubMed ID: 38069578 [TBL] [Abstract][Full Text] [Related]
55. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Packer M Cardiovasc Diabetol; 2020 May; 19(1):62. PubMed ID: 32404204 [TBL] [Abstract][Full Text] [Related]
56. miR-200a-3p overexpression alleviates diabetic cardiomyopathy injury in mice by regulating autophagy through the FOXO3/Mst1/Sirt3/AMPK axis. You P; Chen H; Han W; Deng J PeerJ; 2023; 11():e15840. PubMed ID: 37727684 [TBL] [Abstract][Full Text] [Related]
57. The role and therapeutic potential of macrophages in the pathogenesis of diabetic cardiomyopathy. Zhang S; Zhu X; Chen Y; Wen Z; Shi P; Ni Q Front Immunol; 2024; 15():1393392. PubMed ID: 38774880 [TBL] [Abstract][Full Text] [Related]
58. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Westermeier F; Navarro-Marquez M; López-Crisosto C; Bravo-Sagua R; Quiroga C; Bustamante M; Verdejo HE; Zalaquett R; Ibacache M; Parra V; Castro PF; Rothermel BA; Hill JA; Lavandero S Biochim Biophys Acta; 2015 May; 1853(5):1113-8. PubMed ID: 25686534 [TBL] [Abstract][Full Text] [Related]
59. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Palomer X; Aguilar-Recarte D; García R; Nistal JF; Vázquez-Carrera M Trends Mol Med; 2021 Jun; 27(6):554-571. PubMed ID: 33839024 [TBL] [Abstract][Full Text] [Related]
60. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Li CJ; Lv L; Li H; Yu DM Cardiovasc Diabetol; 2012 Jun; 11():73. PubMed ID: 22713251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]