These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38776810)

  • 1. Pathways and contributions of sulfate reducing-bacteria to arsenic cycling in landfills.
    Hu L; Huang F; Qian Y; Ding T; Yang Y; Shen D; Long Y
    J Hazard Mater; 2024 Jul; 473():134582. PubMed ID: 38776810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils.
    Xia FF; Su Y; Wei XM; He YH; Wu ZC; Ghulam A; He R
    Lett Appl Microbiol; 2014 Jul; 59(1):26-34. PubMed ID: 24576086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic treatment of landfill leachate by sulfate reduction.
    Henry JG; Prasad D
    Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate-reducing bacteria (SRB) mediated carbonate dissolution and arsenic release: Behavior and mechanisms.
    Jiang Y; Gao X; Yang X; Gong P; Pan Z; Yi L; Ma S; Li C; Kong S; Wang Y
    Sci Total Environ; 2024 Jun; 929():172572. PubMed ID: 38641113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    Water Res; 2008 Dec; 42(19):4885-93. PubMed ID: 18929386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining-related multi-resistance genes in sulfate-reducing bacteria treatment of typical karst nonferrous metal(loid) mine tailings in China.
    Liu JL; Yao J; Zhou DL; Liu B; Liu H; Li M; Zhao C; Sunahara G; Duran R
    Environ Sci Pollut Res Int; 2023 Oct; 30(47):104753-104766. PubMed ID: 37707732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) in oil reservoir and biological control of SRB: a review.
    Gao P; Fan K
    Arch Microbiol; 2023 Apr; 205(5):162. PubMed ID: 37010699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains.
    Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ
    Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron.
    Xin Y; Yong K; Duujong L; Ying F
    Chemosphere; 2008 Nov; 73(9):1436-41. PubMed ID: 18840389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of acid mine drainage using sulfate-reducing wetland bioreactor: Filling substrates influence, sulfide oxidation and microbial community.
    Wang H; Zhang M; Dong P; Xue J; Liu L
    Chemosphere; 2024 Feb; 349():140789. PubMed ID: 38013025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.
    Qian J; Liu R; Wei L; Lu H; Chen GH
    Water Res; 2015 Sep; 80():189-99. PubMed ID: 26001823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria.
    Teclu D; Tivchev G; Laing M; Wallis M
    J Hazard Mater; 2009 Jan; 161(2-3):1157-65. PubMed ID: 18541372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic from groundwater by arsenite-oxidizing bacteria.
    Ike M; Miyazaki T; Yamamoto N; Sei K; Soda S
    Water Sci Technol; 2008; 58(5):1095-100. PubMed ID: 18824809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills.
    Fang Y; Du Y; Feng H; Hu LF; Shen DS; Long YY
    Biodegradation; 2015 Apr; 26(2):115-26. PubMed ID: 25680916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Managing the interactions between sulfate- and perchlorate-reducing bacteria when using hydrogen-fed biofilms to treat a groundwater with a high perchlorate concentration.
    Ontiveros-Valencia A; Tang Y; Krajmalnik-Brown R; Rittmann BE
    Water Res; 2014 May; 55():215-24. PubMed ID: 24607522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and biogenesis contribution of sulfate-reducing bacteria in arsenic-contaminated soils from realgar deposits.
    Zhu X; Chen L; Pan H; Wang L; Zhang X; Wang D
    Environ Sci Pollut Res Int; 2022 May; 29(21):31110-31120. PubMed ID: 35001286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.