These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38776898)

  • 21. Benefits of deep learning classification of continuous noninvasive brain-computer interface control.
    Stieger JR; Engel SA; Suma D; He B
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873
    [No Abstract]   [Full Text] [Related]  

  • 22. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods.
    Wu X; Wellington S; Fu Z; Zhang D
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885688
    [No Abstract]   [Full Text] [Related]  

  • 23. Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Ang KK; Chua KSG; Chew E; Guan C
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38091617
    [No Abstract]   [Full Text] [Related]  

  • 24. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain-machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study.
    Ferrero L; Soriano-Segura P; Navarro J; Jones O; Ortiz M; Iáñez E; Azorín JM; Contreras-Vidal JL
    J Neuroeng Rehabil; 2024 Apr; 21(1):48. PubMed ID: 38581031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Online continual decoding of streaming EEG signal with a balanced and informative memory buffer.
    Duan T; Wang Z; Li F; Doretto G; Adjeroh DA; Yin Y; Tao C
    Neural Netw; 2024 Aug; 176():106338. PubMed ID: 38692190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach.
    He H; Wu D
    IEEE Trans Biomed Eng; 2020 Feb; 67(2):399-410. PubMed ID: 31034407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Portable deep-learning decoder for motor imaginary EEG signals based on a novel compact convolutional neural network incorporating spatial-attention mechanism.
    Wu Z; Tang X; Wu J; Huang J; Shen J; Hong H
    Med Biol Eng Comput; 2023 Sep; 61(9):2391-2404. PubMed ID: 37095297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition of EEG Signals from Imagined Vowels Using Deep Learning Methods.
    Sarmiento LC; Villamizar S; López O; Collazos AC; Sarmiento J; Rodríguez JB
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EEGNet-based multi-source domain filter for BCI transfer learning.
    Li M; Li J; Song Z; Deng H; Xu J; Xu G; Liao W
    Med Biol Eng Comput; 2024 Mar; 62(3):675-686. PubMed ID: 37982955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BELT: Bootstrapped EEG-to-Language Training by Natural Language Supervision.
    Zhou J; Duan Y; Chang YC; Wang YK; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3278-3288. PubMed ID: 39190511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning-based electroencephalography analysis: a systematic review.
    Roy Y; Banville H; Albuquerque I; Gramfort A; Falk TH; Faubert J
    J Neural Eng; 2019 Aug; 16(5):051001. PubMed ID: 31151119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decoding movement kinematics from EEG using an interpretable convolutional neural network.
    Borra D; Mondini V; Magosso E; Müller-Putz GR
    Comput Biol Med; 2023 Oct; 165():107323. PubMed ID: 37619325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods.
    Majidov I; Whangbo T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update.
    Lotte F; Bougrain L; Cichocki A; Clerc M; Congedo M; Rakotomamonjy A; Yger F
    J Neural Eng; 2018 Jun; 15(3):031005. PubMed ID: 29488902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network.
    Tortora S; Ghidoni S; Chisari C; Micera S; Artoni F
    J Neural Eng; 2020 Jul; 17(4):046011. PubMed ID: 32480381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning a common dictionary for subject-transfer decoding with resting calibration.
    Morioka H; Kanemura A; Hirayama J; Shikauchi M; Ogawa T; Ikeda S; Kawanabe M; Ishii S
    Neuroimage; 2015 May; 111():167-78. PubMed ID: 25682943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-learning online EEG decoding brain-computer interface using error-related potentials recorded with a consumer-grade headset.
    Ancau DM; Ancau M; Ancau M
    Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35038681
    [No Abstract]   [Full Text] [Related]  

  • 40. Leveraging Deep Learning Techniques to Improve P300-Based Brain Computer Interfaces.
    Da I; Dui LG; Ferrante S; Pedrocchi A; Antonietti A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):4892-4902. PubMed ID: 35552154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.