These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38776965)

  • 1. A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays.
    Buccino AP; Damart T; Bartram J; Mandge D; Xue X; Zbili M; Gänswein T; Jaquier A; Emmenegger V; Markram H; Hierlemann A; Van Geit W
    Neural Comput; 2024 Jun; 36(7):1286-1331. PubMed ID: 38776965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulations of voltage clamping retinal ganglion cells through whole-cell electrodes in the soma.
    Velte TJ; Miller RF
    J Neurophysiol; 1996 May; 75(5):2129-43. PubMed ID: 8734609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automated method for precise axon reconstruction from recordings of high-density micro-electrode arrays.
    Buccino AP; Yuan X; Emmenegger V; Xue X; Gänswein T; Hierlemann A
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234667
    [No Abstract]   [Full Text] [Related]  

  • 4. Applicability of independent component analysis on high-density microelectrode array recordings.
    Jäckel D; Frey U; Fiscella M; Franke F; Hierlemann A
    J Neurophysiol; 2012 Jul; 108(1):334-48. PubMed ID: 22490552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration.
    Jäckel D; Bakkum DJ; Russell TL; Müller J; Radivojevic M; Frey U; Franke F; Hierlemann A
    Sci Rep; 2017 Apr; 7(1):978. PubMed ID: 28428560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.
    Gómez-González JF; Destexhe A; Bal T
    J Neural Eng; 2014 Oct; 11(5):056028. PubMed ID: 25246226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs).
    Ness TV; Chintaluri C; Potworowski J; Łęski S; Głąbska H; Wójcik DK; Einevoll GT
    Neuroinformatics; 2015 Oct; 13(4):403-26. PubMed ID: 25822810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability.
    Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES
    J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.
    Radivojevic M; Jäckel D; Altermatt M; Müller J; Viswam V; Hierlemann A; Bakkum DJ
    Sci Rep; 2016 Aug; 6():31332. PubMed ID: 27510732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiformity of extracellular microelectrode recordings from Aδ neurons in the dorsal root ganglia: a computational modeling study.
    Madden LR; Graham RD; Lempka SF; Bruns TM
    J Neurophysiol; 2024 Feb; 131(2):261-277. PubMed ID: 38169334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell type- and activity-dependent extracellular correlates of intracellular spiking.
    Anastassiou CA; Perin R; Buzsáki G; Markram H; Koch C
    J Neurophysiol; 2015 Jul; 114(1):608-23. PubMed ID: 25995352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs.
    Emmenegger V; Obien MEJ; Franke F; Hierlemann A
    Front Cell Neurosci; 2019; 13():159. PubMed ID: 31118887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data.
    Martinoia S; Massobrio P; Bove M; Massobrio G
    IEEE Trans Biomed Eng; 2004 May; 51(5):859-64. PubMed ID: 15132514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimization-based study of equivalent circuit models for representing recordings at the neuron-electrode interface.
    Thakore V; Molnar P; Hickman JJ
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2338-47. PubMed ID: 22695342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic spike sorting for high-density microelectrode arrays.
    Diggelmann R; Fiscella M; Hierlemann A; Franke F
    J Neurophysiol; 2018 Dec; 120(6):3155-3171. PubMed ID: 30207864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration.
    Hofmann F; Bading H
    J Physiol Paris; 2006; 99(2-3):125-32. PubMed ID: 16442786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains.
    Donner C; Bartram J; Hornauer P; Kim T; Roqueiro D; Hierlemann A; Obozinski G; Schröter M
    PLoS Comput Biol; 2024 Apr; 20(4):e1011964. PubMed ID: 38683881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Mapping of Axonal Arbors Using High-Density Microelectrode Arrays.
    Bullmann T; Radivojevic M; Huber ST; Deligkaris K; Hierlemann A; Frey U
    Front Cell Neurosci; 2019; 13():404. PubMed ID: 31555099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.