These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38776997)

  • 1. The self-boosting ultrafast removal of Cr(VI) and organic dye in textile wastewater through sulfite-induced redox processes.
    Yuan Y; Tian Q; Hou L; Rao R; Yao C; Zhu H
    Environ Pollut; 2024 Aug; 355():124182. PubMed ID: 38776997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)-Sulfite Reactions.
    Jiang B; Liu Y; Zheng J; Tan M; Wang Z; Wu M
    Environ Sci Technol; 2015 Oct; 49(20):12363-71. PubMed ID: 26384045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electron donor source on the treatment of Cr(VI)-containing textile wastewater using sulfate-reducing fluidized bed reactors (FBRs).
    Cirik K; Dursun N; Sahinkaya E; Cinar O
    Bioresour Technol; 2013 Apr; 133():414-20. PubMed ID: 23454387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of treatment schemes comprising chromium-hydrogen peroxide-based advanced oxidation process for textile wastewater.
    Mondal P; Mukherji S; Garg A
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88089-88100. PubMed ID: 35829886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Textile dye degradation using nano zero valent iron: A review.
    Raman CD; Kanmani S
    J Environ Manage; 2016 Jul; 177():341-55. PubMed ID: 27115482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles.
    Wang F; Yang W; Zheng F; Sun Y
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30275389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of a simulated textile wastewater containing the Reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products.
    Castro FD; Bassin JP; Dezotti M
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6307-6316. PubMed ID: 27388593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment.
    Cetin D; Dönmez S; Dönmez G
    J Environ Manage; 2008 Jul; 88(1):76-82. PubMed ID: 17363134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes.
    De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL
    Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of dye in wastewater by Homogeneous Fe(VI)/NaHSO
    Sun M; Huang W; Cheng H; Ma J; Kong Y; Komarneni S
    Chemosphere; 2019 Aug; 228():595-601. PubMed ID: 31059957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ecological new approach for treating Cr(VI)-containing industrial wastewater: Photochemical reduction.
    Liu J; Huang K; Xie K; Yang Y; Liu H
    Water Res; 2016 Apr; 93():187-194. PubMed ID: 26905797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinvestigating the role of reactive species in the oxidation of organic co-contaminants during Cr(VI) reactions with sulfite.
    Dong H; Wei G; Fan W; Ma S; Zhao H; Zhang W; Guan X; Strathmann TJ
    Chemosphere; 2018 Apr; 196():593-597. PubMed ID: 29335231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling.
    Cong Y; Shen L; Wang B; Cao J; Pan Z; Wang Z; Wang K; Li Q; Li X
    Water Res; 2022 Aug; 222():118919. PubMed ID: 35933816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in membrane distillation processes for dye wastewater treatment: A review.
    Nthunya LN; Chong KC; Lai SO; Lau WJ; López-Maldonado EA; Camacho LM; Shirazi MMA; Ali A; Mamba BB; Osial M; Pietrzyk-Thel P; Pregowska A; Mahlangu OT
    Chemosphere; 2024 Jul; 360():142347. PubMed ID: 38759802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents.
    Noman M; Shahid M; Ahmed T; Niazi MBK; Hussain S; Song F; Manzoor I
    Environ Pollut; 2020 Feb; 257():113514. PubMed ID: 31706778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of simultaneous bioremediation of mixed reactive dyes and Cr(VI) containing wastewater through designed experiments.
    Mishra S; Maiti A
    Environ Monit Assess; 2019 Nov; 191(12):766. PubMed ID: 31754863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag.
    Han C; Jiao Y; Wu Q; Yang W; Yang H; Xue X
    J Environ Sci (China); 2016 Aug; 46():63-71. PubMed ID: 27521937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomineralization of azo dye bearing wastewater in periodic discontinuous batch reactor: Effect of microaerophilic conditions on treatment efficiency.
    Naresh Kumar A; Nagendranatha Reddy C; Venkata Mohan S
    Bioresour Technol; 2015; 188():56-64. PubMed ID: 25736903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of photocatalytic degradation of real textile dye house wastewater by response surface methodology.
    Hosseini SM; Fallah N; Royaee SJ
    Water Sci Technol; 2016 Nov; 74(9):1999-2009. PubMed ID: 27842020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.