These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38777088)
21. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Mertins P; Tang LC; Krug K; Clark DJ; Gritsenko MA; Chen L; Clauser KR; Clauss TR; Shah P; Gillette MA; Petyuk VA; Thomas SN; Mani DR; Mundt F; Moore RJ; Hu Y; Zhao R; Schnaubelt M; Keshishian H; Monroe ME; Zhang Z; Udeshi ND; Mani D; Davies SR; Townsend RR; Chan DW; Smith RD; Zhang H; Liu T; Carr SA Nat Protoc; 2018 Jul; 13(7):1632-1661. PubMed ID: 29988108 [TBL] [Abstract][Full Text] [Related]
22. An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts. Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Orsburn B; Wang J; Qu J J Proteome Res; 2017 Jul; 16(7):2445-2456. PubMed ID: 28412812 [TBL] [Abstract][Full Text] [Related]
23. Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons. Post H; Penning R; Fitzpatrick MA; Garrigues LB; Wu W; MacGillavry HD; Hoogenraad CC; Heck AJ; Altelaar AF J Proteome Res; 2017 Feb; 16(2):728-737. PubMed ID: 28107008 [TBL] [Abstract][Full Text] [Related]
24. Optimized Automated Workflow for BioID Improves Reproducibility and Identification of Protein-Protein Interactions. Cirri E; Knaudt H; Di Fraia D; Pömpner N; Rahnis N; Heinze I; Ori A; Dau T J Proteome Res; 2024 Oct; 23(10):4359-4368. PubMed ID: 39231529 [TBL] [Abstract][Full Text] [Related]
25. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics. Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140 [TBL] [Abstract][Full Text] [Related]
26. AutoProteome Chip System for Fully Automated and Integrated Proteomics Sample Preparation and Peptide Fractionation. Lu X; Wang Z; Gao Y; Chen W; Wang L; Huang P; Gao W; Ke M; He A; Tian R Anal Chem; 2020 Jul; 92(13):8893-8900. PubMed ID: 32490667 [TBL] [Abstract][Full Text] [Related]
27. STAGE-diging: A novel in-gel digestion processing for proteomics samples. Soffientini P; Bachi A J Proteomics; 2016 May; 140():48-54. PubMed ID: 27060224 [TBL] [Abstract][Full Text] [Related]
28. A High-Sensitivity Low-Nanoflow LC-MS Configuration for High-Throughput Sample-Limited Proteomics. Zheng R; Matzinger M; Mayer RL; Valenta A; Sun X; Mechtler K Anal Chem; 2023 Dec; 95(51):18673-18678. PubMed ID: 38088903 [TBL] [Abstract][Full Text] [Related]
29. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. Fu Q; Murray CI; Karpov OA; Van Eyk JE Mass Spectrom Rev; 2023 Mar; 42(2):873-886. PubMed ID: 34786750 [TBL] [Abstract][Full Text] [Related]
30. Automated Sample Preparation Workflow for Tandem Mass Tag-Based Proteomics. Mun DG; Joshi NS; Budhraja R; Sachdeva GS; Kang T; Bhat FA; Ding H; Madden BJ; Zhong J; Pandey A J Am Soc Mass Spectrom; 2023 Oct; 34(10):2087-2092. PubMed ID: 37657774 [TBL] [Abstract][Full Text] [Related]
31. Fe Liu X; Rossio V; Thakurta SG; Flora A; Foster L; Bomgarden RD; Gygi SP; Paulo JA J Proteomics; 2022 May; 260():104561. PubMed ID: 35331916 [TBL] [Abstract][Full Text] [Related]
32. Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography. Ruprecht B; Koch H; Domasinska P; Frejno M; Kuster B; Lemeer S Methods Mol Biol; 2017; 1550():47-60. PubMed ID: 28188522 [TBL] [Abstract][Full Text] [Related]
33. Refinement of paramagnetic bead-based digestion protocol for automatic sample preparation using an artificial neural network. Ciordia S; Santos FM; Dias JML; Lamas JR; Paradela A; Alvarez-Sola G; Ávila MA; Corrales F Talanta; 2024 Jul; 274():125988. PubMed ID: 38569368 [TBL] [Abstract][Full Text] [Related]
35. TiO Ren L; Li C; Shao W; Lin W; He F; Jiang Y J Proteome Res; 2018 Jan; 17(1):710-721. PubMed ID: 29116813 [TBL] [Abstract][Full Text] [Related]
36. Surfactant Cocktail-Aided Extraction/Precipitation/On-Pellet Digestion Strategy Enables Efficient and Reproducible Sample Preparation for Large-Scale Quantitative Proteomics. Shen S; An B; Wang X; Hilchey SP; Li J; Cao J; Tian Y; Hu C; Jin L; Ng A; Tu C; Qu M; Zand MS; Qu J Anal Chem; 2018 Sep; 90(17):10350-10359. PubMed ID: 30078316 [TBL] [Abstract][Full Text] [Related]
37. Reducing the cost of semi-automated in-gel tryptic digestion and GeLC sample preparation for high-throughput proteomics. Ruelcke JE; Loo D; Hill MM J Proteomics; 2016 Oct; 149():3-6. PubMed ID: 27084685 [TBL] [Abstract][Full Text] [Related]
38. A Plasma Sample Preparation for Mass Spectrometry using an Automated Workstation. Fu Q; Johnson CW; Wijayawardena BK; Kowalski MP; Kheradmand M; Van Eyk JE J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391810 [TBL] [Abstract][Full Text] [Related]