BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38777700)

  • 1. Influence of antimicrobial peptides on the bacterial membrane curvature and vice versa.
    Cardoso MH; de la Fuente-Nunez C; Santos NC; Zasloff MA; Franco OL
    Trends Microbiol; 2024 Jul; 32(7):624-627. PubMed ID: 38777700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial peptides: Cell Membrane and Microbial Surface Interactions.
    Lohner K; Hilpert K
    Biochim Biophys Acta; 2016 May; 1858(5):915-7. PubMed ID: 26965988
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides.
    Goki NH; Tehranizadeh ZA; Saberi MR; Khameneh B; Bazzaz BSF
    Curr Pharm Biotechnol; 2024; 25(8):1041-1057. PubMed ID: 37921126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics.
    Lohner K; Blondelle SE
    Comb Chem High Throughput Screen; 2005 May; 8(3):241-56. PubMed ID: 15892626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents.
    Epand RF; Mor A; Epand RM
    Cell Mol Life Sci; 2011 Jul; 68(13):2177-88. PubMed ID: 21573783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes.
    Koller D; Lohner K
    Biochim Biophys Acta; 2014 Sep; 1838(9):2250-9. PubMed ID: 24853655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components.
    Malmsten M
    Curr Top Med Chem; 2016; 16(1):16-24. PubMed ID: 26139113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Amphipathic Peptidomimetics as Antimicrobial Agents to Combat Drug Resistance.
    Su M; Su Y
    Molecules; 2024 May; 29(11):. PubMed ID: 38893366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified horseshoe crab peptides target and kill bacteria inside host cells.
    Amiss AS; von Pein JB; Webb JR; Condon ND; Harvey PJ; Phan MD; Schembri MA; Currie BJ; Sweet MJ; Craik DJ; Kapetanovic R; Henriques ST; Lawrence N
    Cell Mol Life Sci; 2021 Dec; 79(1):38. PubMed ID: 34971427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
    Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC
    Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances.
    Fields RN; Roy H
    RNA Biol; 2018; 15(4-5):480-491. PubMed ID: 28816600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Antimicrobial peptides: mode of action and perspectives of practical application].
    Okorochenkov SA; Zheltukhina GA; Nebol'sin VE
    Biomed Khim; 2012; 58(2):131-43. PubMed ID: 22724354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature.
    Strandberg E; Zerweck J; Wadhwani P; Ulrich AS
    Biophys J; 2013 Mar; 104(6):L9-11. PubMed ID: 23528099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an experimental classification system for membrane active peptides.
    Brand GD; Ramada MHS; Genaro-Mattos TC; Bloch C
    Sci Rep; 2018 Jan; 8(1):1194. PubMed ID: 29352252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.
    Tang YL; Shi YH; Zhao W; Hao G; Le GW
    J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista.
    Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R
    Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between Antimicrobial Peptide Magainin 2 and Nonlipid Components in the Bacterial Outer Envelope.
    Montero Vega S; Booth V; Rowley CN
    J Phys Chem B; 2022 Jul; 126(29):5473-5480. PubMed ID: 35829704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.