These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38778425)

  • 21. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to approach machine learning-based prediction of drug/compound-target interactions.
    Atas Guvenilir H; Doğan T
    J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generative large language models are all-purpose text analytics engines: text-to-text learning is all your need.
    Peng C; Yang X; Chen A; Yu Z; Smith KE; Costa AB; Flores MG; Bian J; Wu Y
    J Am Med Inform Assoc; 2024 Sep; 31(9):1892-1903. PubMed ID: 38630580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generating interacting protein sequences using domain-to-domain translation.
    Meynard-Piganeau B; Fabbri C; Weigt M; Pagnani A; Feinauer C
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37399105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal Transformer for Property Prediction in Polymers.
    Han S; Kang Y; Park H; Yi J; Park G; Kim J
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16853-16860. PubMed ID: 38501934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trends in Deep Learning for Property-driven Drug Design.
    Born J; Manica M
    Curr Med Chem; 2021; 28(38):7862-7886. PubMed ID: 34325627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Language models can learn complex molecular distributions.
    Flam-Shepherd D; Zhu K; Aspuru-Guzik A
    Nat Commun; 2022 Jun; 13(1):3293. PubMed ID: 35672310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural machine translation of clinical text: an empirical investigation into multilingual pre-trained language models and transfer-learning.
    Han L; Gladkoff S; Erofeev G; Sorokina I; Galiano B; Nenadic G
    Front Digit Health; 2024; 6():1211564. PubMed ID: 38468693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition.
    Jaeger S; Fulle S; Turk S
    J Chem Inf Model; 2018 Jan; 58(1):27-35. PubMed ID: 29268609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformer-based deep learning for predicting protein properties in the life sciences.
    Chandra A; Tünnermann L; Löfstedt T; Gratz R
    Elife; 2023 Jan; 12():. PubMed ID: 36651724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TEC-miTarget: enhancing microRNA target prediction based on deep learning of ribonucleic acid sequences.
    Yang T; Wang Y; He Y
    BMC Bioinformatics; 2024 Apr; 25(1):159. PubMed ID: 38643080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adapting the DeepSARM approach for dual-target ligand design.
    Yoshimori A; Hu H; Bajorath J
    J Comput Aided Mol Des; 2021 May; 35(5):587-600. PubMed ID: 33712972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic extraction of 12 cardiovascular concepts from German discharge letters using pre-trained language models.
    Richter-Pechanski P; Geis NA; Kiriakou C; Schwab DM; Dieterich C
    Digit Health; 2021; 7():20552076211057662. PubMed ID: 34868618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploiting pretrained biochemical language models for targeted drug design.
    Uludoğan G; Ozkirimli E; Ulgen KO; Karalı N; Özgür A
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii155-ii161. PubMed ID: 36124801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomedical generative pre-trained based transformer language model for age-related disease target discovery.
    Zagirova D; Pushkov S; Leung GHD; Liu BHM; Urban A; Sidorenko D; Kalashnikov A; Kozlova E; Naumov V; Pun FW; Ozerov IV; Aliper A; Zhavoronkov A
    Aging (Albany NY); 2023 Sep; 15(18):9293-9309. PubMed ID: 37742294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural Translation and Automated Recognition of ICD-10 Medical Entities From Natural Language: Model Development and Performance Assessment.
    Falissard L; Morgand C; Ghosn W; Imbaud C; Bounebache K; Rey G
    JMIR Med Inform; 2022 Apr; 10(4):e26353. PubMed ID: 35404262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.