These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38779224)

  • 1. Rapid preparation of binary mixtures of sodium carboxylates as anodes in sodium-ion batteries.
    Desai AV; Ettlinger R; Seleghini HS; Stanzione MG; Cabañero JM; Ashbrook SE; Morris RE; Armstrong AR
    J Mater Chem A Mater; 2024 May; 12(20):12119-12125. PubMed ID: 38779224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries.
    Desai AV; Rainer DN; Pramanik A; Cabañero JM; Morris RE; Armstrong AR
    Small Methods; 2021 Dec; 5(12):e2101016. PubMed ID: 34928021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halogenated Carboxylates as Organic Anodes for Stable and Sustainable Sodium-Ion Batteries.
    Huang J; Callender KIE; Qin K; Girgis M; Paige M; Yang Z; Clayborne AZ; Luo C
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40784-40792. PubMed ID: 36049020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Effect on the Performance of Carboxylate Anode Materials in Na-Ion Batteries.
    Huang J; Li S; Wang Y; Kim EY; Yang Z; Chen D; Cheng L; Luo C
    Small; 2024 Apr; 20(14):e2308113. PubMed ID: 37972285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium Naphthalene-2,6-dicarboxylate: An Anode for Sodium Batteries.
    Cabañero JM; Pimenta V; Cannon KC; Morris RE; Armstrong AR
    ChemSusChem; 2019 Oct; 12(19):4522-4528. PubMed ID: 31403248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkaline earth metal vanadates as sodium-ion battery anodes.
    Xu X; Niu C; Duan M; Wang X; Huang L; Wang J; Pu L; Ren W; Shi C; Meng J; Song B; Mai L
    Nat Commun; 2017 Sep; 8(1):460. PubMed ID: 28878210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bismuth Nanoparticles Anchored on Ti
    Ma H; Li J; Yang J; Wang N; Liu Z; Wang T; Su D; Wang C; Wang G
    Chem Asian J; 2021 Nov; 16(22):3774-3780. PubMed ID: 34605208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries.
    Jiang Y; Zou G; Hou H; Li J; Liu C; Qiu X; Ji X
    ACS Nano; 2019 Sep; 13(9):10787-10797. PubMed ID: 31442023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries.
    Sun B; Xiong P; Maitra U; Langsdorf D; Yan K; Wang C; Janek J; Schröder D; Wang G
    Adv Mater; 2020 May; 32(18):e1903891. PubMed ID: 31599999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylpyridine Dicarboxylate as Highly Efficient Organic Anode for Na-Ion Batteries.
    Jia K; Zhu L; Wu F
    ChemSusChem; 2021 Aug; 14(15):3124-3130. PubMed ID: 34076360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries.
    Li D; Yan D; Zhang X; Li J; Lu T; Pan L
    J Colloid Interface Sci; 2017 Jul; 497():350-358. PubMed ID: 28301830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Battery Materials from Biomass.
    Liedel C
    ChemSusChem; 2020 May; 13(9):2110-2141. PubMed ID: 32212246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.
    Sun B; Li P; Zhang J; Wang D; Munroe P; Wang C; Notten PHL; Wang G
    Adv Mater; 2018 May; ():e1801334. PubMed ID: 29855109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Self-assembled Hairball-Like VS
    Ding S; Zhou B; Chen C; Huang Z; Li P; Wang S; Cao G; Zhang M
    Nanomicro Lett; 2020 Jan; 12(1):39. PubMed ID: 34138251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Application of Hollow Structured Anodes for Sodium-Ion Batteries: From Simple to Complex Systems.
    Xie F; Zhang L; Ye C; Jaroniec M; Qiao SZ
    Adv Mater; 2019 Sep; 31(38):e1800492. PubMed ID: 29971832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Superior Performance of Hard Carbon Anodes in Sodium-Ion Compared With Lithium- and Potassium-Ion Batteries.
    Guo Z; Xu Z; Xie F; Jiang J; Zheng K; Alabidun S; Crespo-Ribadeneyra M; Hu YS; Au H; Titirici MM
    Adv Mater; 2023 Oct; 35(42):e2304091. PubMed ID: 37501223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Sodium-Ion Batteries Enabled by 3D Nanoflowers Comprised of Ternary Sn-Based Dichalcogenides Embedded in Nitrogen and Sulfur Dual-Doped Carbon.
    Zheng Y; Wei S; Shang J; Wang D; Lei C; Zhao Y
    Small; 2023 Nov; 19(47):e2303746. PubMed ID: 37488690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dithiin-Linked Covalent Organic Polymer for Ultrahigh Capacity Half-Cell and Symmetric Full-Cell Sodium-Ion Batteries.
    Xu S; Wang C; Song T; Yao H; Yang J; Wang X; Zhu J; Lee CS; Zhang Q
    Adv Sci (Weinh); 2023 Nov; 10(32):e2304497. PubMed ID: 37749871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.