BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38779817)

  • 1. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase.
    Johnson SB; Li H; Valentino H; Sobrado P
    Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OxaD: A Versatile Indolic Nitrone Synthase from the Marine-Derived Fungus Penicillium oxalicum F30.
    Newmister SA; Gober CM; Romminger S; Yu F; Tripathi A; Parra LL; Williams RM; Berlinck RG; Joullié MM; Sherman DH
    J Am Chem Soc; 2016 Sep; 138(35):11176-84. PubMed ID: 27505044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
    Campbell AC; Robinson R; Mena-Aguilar D; Sobrado P; Tanner JJ
    Biochemistry; 2020 Dec; 59(48):4609-4616. PubMed ID: 33226785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase.
    Orru R; Pazmiño DE; Fraaije MW; Mattevi A
    J Biol Chem; 2010 Nov; 285(45):35021-8. PubMed ID: 20807767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of two-component flavin-dependent monooxygenase systems.
    Robbins JM; Ellis HR
    Methods Enzymol; 2019; 620():399-422. PubMed ID: 31072495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of p
    Pitsawong W; Chenprakhon P; Dhammaraj T; Medhanavyn D; Sucharitakul J; Tongsook C; van Berkel WJH; Chaiyen P; Miller AF
    J Biol Chem; 2020 Mar; 295(12):3965-3981. PubMed ID: 32014994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants.
    Stoisser T; Klimacek M; Wilson DK; Nidetzky B
    FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase.
    Xiong J; Ellis HR
    Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on the flavin-dependent N⁶-lysine monooxygenase MbsG reveal an unusual control for catalysis.
    Robinson RM; Rodriguez PJ; Sobrado P
    Arch Biochem Biophys; 2014 May; 550-551():58-66. PubMed ID: 24769337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and chemical trapping of flavin-oxide intermediates reveals substrate-directed reaction multiplicity.
    Lin KH; Lyu SY; Yeh HW; Li YS; Hsu NS; Huang CM; Wang YL; Shih HW; Wang ZC; Wu CJ; Li TL
    Protein Sci; 2020 Jul; 29(7):1655-1666. PubMed ID: 32362037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan-47 in the active site of Methylophaga sp. strain SK1 flavin-monooxygenase is important for hydride transfer.
    Han A; Robinson RM; Badieyan S; Ellerbrock J; Sobrado P
    Arch Biochem Biophys; 2013 Apr; 532(1):46-53. PubMed ID: 23357278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Component Flavin-Dependent Riboflavin Monooxygenase Degrades Riboflavin in Devosia riboflavina.
    Kanazawa H; Shigemoto R; Kawasaki Y; Oinuma KI; Nakamura A; Masuo S; Takaya N
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29610214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.