These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38779934)

  • 1. Integrating water balance mechanisms into predictions of insect responses to climate change.
    Sinclair BJ; Saruhashi S; Terblanche JS
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38779934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water loss in insects: an environmental change perspective.
    Chown SL; Sørensen JG; Terblanche JS
    J Insect Physiol; 2011 Aug; 57(8):1070-84. PubMed ID: 21640726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of tolerance variation in vulnerability forecasting of insects.
    Diamond SE; Yilmaz AR
    Curr Opin Insect Sci; 2018 Oct; 29():85-92. PubMed ID: 30551831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating thermal tolerance, water balance and morphology: An experimental study on dung beetles.
    Nervo B; Roggero A; Isaia M; Chamberlain D; Rolando A; Palestrini C
    J Therm Biol; 2021 Oct; 101():103093. PubMed ID: 34879911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in upper thermal tolerance among 19 species from temperate wetlands.
    Katzenberger M; Duarte H; Relyea R; Beltrán JF; Tejedo M
    J Therm Biol; 2021 Feb; 96():102856. PubMed ID: 33627284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause.
    Benoit JB
    Prog Mol Subcell Biol; 2010; 49():209-29. PubMed ID: 20069411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in heat tolerance following a period of heat stress in a naturally occurring insect species.
    Ardelan A; Tsai A; Will S; McGuire R; Amarasekare P
    J Anim Ecol; 2023 Oct; 92(10):2039-2051. PubMed ID: 37667662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world?
    Ferguson LV; Adamo SA
    J Exp Biol; 2023 Feb; 226(4):. PubMed ID: 36825944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of thermal ramping assays used to assess thermal tolerance in arthropods.
    Overgaard J; Kristensen TN; Sørensen JG
    PLoS One; 2012; 7(3):e32758. PubMed ID: 22427876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of Gene Expression and Thermal Tolerance: Implications for Climate Change Vulnerability in a Tropical Forest Lizard.
    Rosso AA; Casement B; Chung AK; Curlis JD; Folfas E; Gallegos MA; Neel LK; Nicholson DJ; Williams CE; McMillan WO; Logan ML; Cox CL
    Ecol Evol Physiol; 2024; 97(2):81-96. PubMed ID: 38728692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutualism meltdown in insects: bacteria constrain thermal adaptation.
    Wernegreen JJ
    Curr Opin Microbiol; 2012 Jun; 15(3):255-62. PubMed ID: 22381679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions.
    Tüzün N; Stoks R
    Curr Opin Insect Sci; 2018 Oct; 29():78-84. PubMed ID: 30551830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change.
    Gonzalez VH; Manweiler R; Smith AR; Oyen K; Cardona D; Wcislo WT
    Sci Rep; 2023 Dec; 13(1):22320. PubMed ID: 38102400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survive a Warming Climate: Insect Responses to Extreme High Temperatures.
    Ma CS; Ma G; Pincebourde S
    Annu Rev Entomol; 2021 Jan; 66():163-184. PubMed ID: 32870704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert.
    Aragon-Traverso JH; Piñeiro M; Olivares JPS; Sanabria EA
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111505. PubMed ID: 37619666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat tolerance variation reveals vulnerability of tropical herbivore-parasitoid interactions to climate change.
    Wenda C; Gaitán-Espitia JD; Solano-Iguaran JJ; Nakamura A; Majcher BM; Ashton LA
    Ecol Lett; 2023 Feb; 26(2):278-290. PubMed ID: 36468222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change.
    Kingsolver JG; Buckley LB
    Curr Opin Insect Sci; 2020 Oct; 41():17-24. PubMed ID: 32599547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants.
    Nguyen AD; DeNovellis K; Resendez S; Pustilnik JD; Gotelli NJ; Parker JD; Cahan SH
    J Comp Physiol B; 2017 Dec; 187(8):1107-1116. PubMed ID: 28439669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection on phenotypic plasticity favors thermal canalization.
    Svensson EI; Gomez-Llano M; Waller JT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29767-29774. PubMed ID: 33168720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.