These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38779934)

  • 21. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855).
    Machekano H; Zidana C; Gotcha N; Nyamukondiwa C
    Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary impacts of winter climate change on insects.
    Marshall KE; Gotthard K; Williams CM
    Curr Opin Insect Sci; 2020 Oct; 41():54-62. PubMed ID: 32711362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological determinants of biogeography: The importance of metabolic depression to heat tolerance.
    Liao ML; Li GY; Wang J; Marshall DJ; Hui TY; Ma SY; Zhang YM; Helmuth B; Dong YW
    Glob Chang Biol; 2021 Jun; 27(11):2561-2579. PubMed ID: 33666308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-balance characteristics respond to changes in body size in subantarctic weevils.
    Chown SL; Klok CJ
    Physiol Biochem Zool; 2003; 76(5):634-43. PubMed ID: 14671711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species.
    Nyamukondiwa C; Chidawanyika F; Machekano H; Mutamiswa R; Sands B; Mgidiswa N; Wall R
    PLoS One; 2018; 13(6):e0198610. PubMed ID: 29874290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How insects survive the cold: molecular mechanisms-a review.
    Clark MS; Worland MR
    J Comp Physiol B; 2008 Nov; 178(8):917-33. PubMed ID: 18584182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift.
    Leonard AM; Lancaster LT
    BMC Evol Biol; 2020 Apr; 20(1):47. PubMed ID: 32326878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydric effects on thermal tolerances influence climate vulnerability in a high-latitude beetle.
    Riddell EA; Mutanen M; Ghalambor CK
    Glob Chang Biol; 2023 Sep; 29(18):5184-5198. PubMed ID: 37376709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond the Mean: Biological Impacts of Cryptic Temperature Change.
    Sheldon KS; Dillon ME
    Integr Comp Biol; 2016 Jul; 56(1):110-9. PubMed ID: 27081192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.
    Albright TP; Mutiibwa D; Gerson AR; Smith EK; Talbot WA; O'Neill JJ; McKechnie AE; Wolf BO
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2283-2288. PubMed ID: 28193891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The evolution of insect body coloration under changing climates.
    Clusella-Trullas S; Nielsen M
    Curr Opin Insect Sci; 2020 Oct; 41():25-32. PubMed ID: 32629405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insects in fluctuating thermal environments.
    Colinet H; Sinclair BJ; Vernon P; Renault D
    Annu Rev Entomol; 2015 Jan; 60():123-40. PubMed ID: 25341105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change.
    Pincebourde S; Woods HA
    Curr Opin Insect Sci; 2020 Oct; 41():63-70. PubMed ID: 32777713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic models for predicting insect responses to climate change.
    Maino JL; Kong JD; Hoffmann AA; Barton MG; Kearney MR
    Curr Opin Insect Sci; 2016 Oct; 17():81-86. PubMed ID: 27720078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenological physiology: seasonal patterns of plant stress tolerance in a changing climate.
    Grossman JJ
    New Phytol; 2023 Mar; 237(5):1508-1524. PubMed ID: 36372992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal developmental plasticity affects body size and water conservation of Drosophila nepalensis from the Western Himalayas.
    Parkash R; Lambhod C; Singh D
    Bull Entomol Res; 2014 Aug; 104(4):504-16. PubMed ID: 24923309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infection increases vulnerability to climate change via effects on host thermal tolerance.
    Greenspan SE; Bower DS; Roznik EA; Pike DA; Marantelli G; Alford RA; Schwarzkopf L; Scheffers BR
    Sci Rep; 2017 Aug; 7(1):9349. PubMed ID: 28839273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid induction of the heat hardening response in an Arctic insect.
    Sørensen MH; Kristensen TN; Lauritzen JMS; Noer NK; Høye TT; Bahrndorff S
    Biol Lett; 2019 Oct; 15(10):20190613. PubMed ID: 31615371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect.
    Jourdan J; Baranov V; Wagner R; Plath M; Haase P
    J Anim Ecol; 2019 Oct; 88(10):1498-1509. PubMed ID: 31264217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.