These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38780285)

  • 1. High-Throughput Single-Entity Electrochemistry with Microelectrode Arrays.
    Alden SE; Zhang L; Wang Y; Lavrik NV; Thorgaard SN; Baker LA
    Anal Chem; 2024 Jun; 96(22):9177-9184. PubMed ID: 38780285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Array Microcell Method (AMCM) for Serial Electroanalysis.
    Alden SE; Siepser NP; Patterson JA; Jagdale GS; Choi M; Baker LA
    ChemElectroChem; 2020 Mar; 7(5):1084-1091. PubMed ID: 36588586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultra-low noise amplifier array system for high throughput single entity analysis.
    Zhong CB; Ma H; Wang JJ; Zhang LL; Ying YL; Wang R; Wan YJ; Long YT
    Faraday Discuss; 2022 Apr; 233(0):33-43. PubMed ID: 34913454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bipolar Electrochemistry on a Nanopore-Supported Platinum Nanoparticle Electrode.
    Hao R; Fan Y; Han C; Zhang B
    Anal Chem; 2017 Dec; 89(23):12652-12658. PubMed ID: 29111678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combinatorial approach to the study of particle size effects on supported electrocatalysts: oxygen reduction on gold.
    Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP
    J Comb Chem; 2006; 8(5):679-86. PubMed ID: 16961406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry.
    Lu SM; Li MY; Long YT
    J Phys Chem Lett; 2022 Jun; 13(21):4653-4659. PubMed ID: 35604854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic Collision Electrochemistry from Single G-Quadruplex/Hemin: Electrochemical Amplification and MicroRNA Sensing.
    Wang H; Yang C; Tang H; Li Y
    Anal Chem; 2021 Mar; 93(10):4593-4600. PubMed ID: 33660976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of enzyme activity in single cells by voltammetry using a microcell with a positionable dual electrode.
    Gao N; Zhao M; Zhang X; Jin W
    Anal Chem; 2006 Jan; 78(1):231-8. PubMed ID: 16383332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays.
    Koehne JE; Chen H; Cassell AM; Ye Q; Han J; Meyyappan M; Li J
    Clin Chem; 2004 Oct; 50(10):1886-93. PubMed ID: 15319319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft microelectrode linear array for scanning electrochemical microscopy.
    Cortés-Salazar F; Momotenko D; Lesch A; Wittstock G; Girault HH
    Anal Chem; 2010 Dec; 82(24):10037-44. PubMed ID: 21090683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.
    Abbott J; Ye T; Ham D; Park H
    Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries.
    Fu K; Kwon SR; Han D; Bohn PW
    Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-gel route to zirconia-Pt-nanoelectrode arrays 8 nm in radius: their geometrical impact in mass transport.
    Fontaine O; Laberty-Robert C; Sanchez C
    Langmuir; 2012 Feb; 28(7):3650-7. PubMed ID: 22260172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation.
    Peinetti AS; Gilardoni RS; Mizrahi M; Requejo FG; González GA; Battaglini F
    Anal Chem; 2016 Jun; 88(11):5752-9. PubMed ID: 27087412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity.
    Ma C; Contento NM; Gibson LR; Bohn PW
    ACS Nano; 2013 Jun; 7(6):5483-90. PubMed ID: 23691968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface.
    Lu SM; Chen JF; Wang HF; Hu P; Long YT
    J Phys Chem Lett; 2023 Feb; 14(5):1113-1123. PubMed ID: 36705310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Electrochemical Impedance Spectroscopy of Stochastic Nanoparticle Collision: Short Time Fourier Transform versus Continuous Wavelet Transform.
    Ha LD; Kim KJ; Kwon SJ; Chang BY; Hwang S
    Small; 2023 Aug; 19(33):e2302158. PubMed ID: 37162441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quadruple nanoelectrode assembly for simultaneous analysis of multiple redox species and its application to multi-channel scanning electrochemical microscopy.
    Gwon HJ; Lim D; Nam Y; Ahn HS
    Anal Chim Acta; 2022 Sep; 1226():340287. PubMed ID: 36068067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.