These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38780527)

  • 1. A mathematical framework for measuring and tuning tempo in developmental gene regulatory networks.
    Manser CL; Perez-Carrasco R
    Development; 2024 Jun; 151(12):. PubMed ID: 38780527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branching and oscillations in the epigenetic landscape of cell-fate determination.
    Rabajante JF; Babierra AL
    Prog Biophys Mol Biol; 2015 Mar; 117(2-3):240-249. PubMed ID: 25641423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Decoding of Cellular Identities in a Genetic Network.
    Petkova MD; Tkačik G; Bialek W; Wieschaus EF; Gregor T
    Cell; 2019 Feb; 176(4):844-855.e15. PubMed ID: 30712870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel generic models for differentiating stem cells reveal oscillatory mechanisms.
    Farjami S; Camargo Sosa K; Dawes JHP; Kelsh RN; Rocco A
    J R Soc Interface; 2021 Oct; 18(183):20210442. PubMed ID: 34610261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions.
    Xue G; Zhang X; Li W; Zhang L; Zhang Z; Zhou X; Zhang D; Zhang L; Li Z
    Elife; 2024 Apr; 12():. PubMed ID: 38652107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Logical modeling of cell fate specification-Application to T cell commitment.
    Cacace E; Collombet S; Thieffry D
    Curr Top Dev Biol; 2020; 139():205-238. PubMed ID: 32450961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PI3K signaling specifies proximal-distal fate by driving a developmental gene regulatory network in SOX9+ mouse lung progenitors.
    Khattar D; Fernandes S; Snowball J; Guo M; Gillen MC; Jain SS; Sinner D; Zacharias W; Swarr DT
    Elife; 2022 Aug; 11():. PubMed ID: 35976093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of human embryo development: from cell fate to tissue shape and back.
    Shahbazi MN
    Development; 2020 Jul; 147(14):. PubMed ID: 32680920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory networks and epigenetic modifications in cell differentiation.
    Roy S; Kundu TK
    IUBMB Life; 2014 Feb; 66(2):100-9. PubMed ID: 24574067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A geometrical perspective on development.
    Raju A; Siggia ED
    Dev Growth Differ; 2023 Jun; 65(5):245-254. PubMed ID: 37190845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boolean Network Models of Human Preimplantation Development.
    Bolteau M; Chebouba L; David L; Bourdon J; Guziolowski C
    J Comput Biol; 2024 Jun; 31(6):513-523. PubMed ID: 38814745
    [No Abstract]   [Full Text] [Related]  

  • 12. A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development.
    Stigler B; Chamberlin HM
    BMC Syst Biol; 2012 Jun; 6():77. PubMed ID: 22734688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks.
    Exelby K; Herrera-Delgado E; Perez LG; Perez-Carrasco R; Sagner A; Metzis V; Sollich P; Briscoe J
    Development; 2021 Feb; 148(4):. PubMed ID: 33547135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repressive interactions in gene regulatory networks: When you have no other choice.
    Delás MJ; Briscoe J
    Curr Top Dev Biol; 2020; 139():239-266. PubMed ID: 32450962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development.
    Onichtchouk D; Geier F; Polok B; Messerschmidt DM; Mössner R; Wendik B; Song S; Taylor V; Timmer J; Driever W
    Mol Syst Biol; 2010; 6():354. PubMed ID: 20212526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-dependent gene regulatory network reveals regulation dynamics and cell trajectories using unspliced transcripts.
    Tu YH; Juan HF; Huang HC
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates.
    Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1.
    Sankar S; Yellajoshyula D; Zhang B; Teets B; Rockweiler N; Kroll KL
    Sci Rep; 2016 Nov; 6():37412. PubMed ID: 27881878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Regulatory Landscape of Lineage Differentiation in a Metazoan Embryo.
    Du Z; Santella A; He F; Shah PK; Kamikawa Y; Bao Z
    Dev Cell; 2015 Sep; 34(5):592-607. PubMed ID: 26321128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal coordination of gene networks by Zelda in the early Drosophila embryo.
    Nien CY; Liang HL; Butcher S; Sun Y; Fu S; Gocha T; Kirov N; Manak JR; Rushlow C
    PLoS Genet; 2011 Oct; 7(10):e1002339. PubMed ID: 22028675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.