These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38780729)

  • 41. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures.
    Scheid A; Nebel ME
    BMC Bioinformatics; 2012 Jul; 13():159. PubMed ID: 22776037
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
    Lu ZJ; Turner DH; Mathews DH
    Nucleic Acids Res; 2006; 34(17):4912-24. PubMed ID: 16982646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures.
    Gruber AR; Neuböck R; Hofacker IL; Washietl S
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W335-8. PubMed ID: 17452347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. bpRNA: large-scale automated annotation and analysis of RNA secondary structure.
    Danaee P; Rouches M; Wiley M; Deng D; Huang L; Hendrix D
    Nucleic Acids Res; 2018 Jun; 46(11):5381-5394. PubMed ID: 29746666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective.
    Rivas E
    RNA Biol; 2013 Jul; 10(7):1185-96. PubMed ID: 23695796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA Secondary Structure Prediction with Pseudoknots Using Chemical Reaction Optimization Algorithm.
    Islam MR; Islam MS; Sakeef N
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1195-1207. PubMed ID: 31443047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting RNA SHAPE scores with deep learning.
    Bliss N; Bindewald E; Shapiro BA
    RNA Biol; 2020 Sep; 17(9):1324-1330. PubMed ID: 32476596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamic characterization of RNA duplexes containing naturally occurring 1 x 2 nucleotide internal loops.
    Badhwar J; Karri S; Cass CK; Wunderlich EL; Znosko BM
    Biochemistry; 2007 Dec; 46(50):14715-24. PubMed ID: 18020450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.
    Chen X; He SM; Bu D; Zhang F; Wang Z; Chen R; Gao W
    Bioinformatics; 2008 Sep; 24(18):1994-2001. PubMed ID: 18586700
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conditioning and Robustness of RNA Boltzmann Sampling under Thermodynamic Parameter Perturbations.
    Rogers E; Murrugarra D; Heitsch C
    Biophys J; 2017 Jul; 113(2):321-329. PubMed ID: 28629618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes.
    Sugimoto N; Nakano S; Katoh M; Matsumura A; Nakamuta H; Ohmichi T; Yoneyama M; Sasaki M
    Biochemistry; 1995 Sep; 34(35):11211-6. PubMed ID: 7545436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accurate SHAPE-directed RNA structure determination.
    Deigan KE; Li TW; Mathews DH; Weeks KM
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):97-102. PubMed ID: 19109441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rtools: a web server for various secondary structural analyses on single RNA sequences.
    Hamada M; Ono Y; Kiryu H; Sato K; Kato Y; Fukunaga T; Mori R; Asai K
    Nucleic Acids Res; 2016 Jul; 44(W1):W302-7. PubMed ID: 27131356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNAexinv: An extended inverse RNA folding from shape and physical attributes to sequences.
    Avihoo A; Churkin A; Barash D
    BMC Bioinformatics; 2011 Aug; 12():319. PubMed ID: 21813013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating uncertainty in predicted folding free energy changes of RNA secondary structures.
    Zuber J; Mathews DH
    RNA; 2019 Jun; 25(6):747-754. PubMed ID: 30952689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.