These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38780733)

  • 1. How to do RNA-RNA Interaction Prediction? A Use-Case Driven Handbook Using IntaRNA.
    Raden M; Miladi M
    Methods Mol Biol; 2024; 2726():209-234. PubMed ID: 38780733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of various seed, accessibility and interaction constraints on sRNA target prediction- a systematic assessment.
    Raden M; Müller T; Mautner S; Gelhausen R; Backofen R
    BMC Bioinformatics; 2020 Jan; 21(1):15. PubMed ID: 31931703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions.
    Busch A; Richter AS; Backofen R
    Bioinformatics; 2008 Dec; 24(24):2849-56. PubMed ID: 18940824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of miRNA targets.
    Oulas A; Karathanasis N; Louloupi A; Pavlopoulos GA; Poirazi P; Kalantidis K; Iliopoulos I
    Methods Mol Biol; 2015; 1269():207-29. PubMed ID: 25577381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IntaRNAhelix-composing RNA-RNA interactions from stable inter-molecular helices boosts bacterial sRNA target prediction.
    Gelhausen R; Will S; Hofacker IL; Backofen R; Raden M
    J Bioinform Comput Biol; 2019 Oct; 17(5):1940009. PubMed ID: 31856671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Web Services for RNA-RNA Interaction Prediction.
    Fukunaga T; Iwakiri J; Hamada M
    Methods Mol Biol; 2023; 2586():175-195. PubMed ID: 36705905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast RNA-RNA Interaction Prediction Methods for Interaction Analysis of Transcriptome-Scale Large Datasets.
    Fukunaga T; Hamada M
    Methods Mol Biol; 2023; 2586():163-173. PubMed ID: 36705904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRAFT: a bioinformatics software for custom prediction of circular RNA functions.
    Dal Molin A; Gaffo E; Difilippo V; Buratin A; Tretti Parenzan C; Bresolin S; Bortoluzzi S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35106564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CopomuS-Ranking Compensatory Mutations to Guide RNA-RNA Interaction Verification Experiments.
    Raden M; Gutmann F; Uhl M; Backofen R
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32481751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.
    Wright PR; Georg J; Mann M; Sorescu DA; Richter AS; Lott S; Kleinkauf R; Hess WR; Backofen R
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W119-23. PubMed ID: 24838564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction.
    Naskulwar K; Peña-Castillo L
    RNA Biol; 2022; 19(1):44-54. PubMed ID: 34965197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hitchhiker's guide to RNA-RNA structure and interaction prediction tools.
    Tieng FYF; Abdullah-Zawawi MR; Md Shahri NAA; Mohamed-Hussein ZA; Lee LH; Mutalib NA
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38040490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions.
    Mann M; Wright PR; Backofen R
    Nucleic Acids Res; 2017 Jul; 45(W1):W435-W439. PubMed ID: 28472523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Literature-based condition-specific miRNA-mRNA target prediction.
    Oh M; Rhee S; Moon JH; Chae H; Lee S; Kang J; Kim S
    PLoS One; 2017; 12(3):e0174999. PubMed ID: 28362846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAViGaTing the micronome--using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs.
    Shirdel EA; Xie W; Mak TW; Jurisica I
    PLoS One; 2011 Feb; 6(2):e17429. PubMed ID: 21364759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Practical Guide to miRNA Target Prediction.
    Akhtar MM; Micolucci L; Islam MS; Olivieri F; Procopio AD
    Methods Mol Biol; 2019; 1970():1-13. PubMed ID: 30963484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroTarget: MicroRNA target gene prediction approach with application to breast cancer.
    Torkey H; Heath LS; ElHefnawi M
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750013. PubMed ID: 28552033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of microRNA targets in Caenorhabditis elegans using a self-organizing map.
    Heikkinen L; Kolehmainen M; Wong G
    Bioinformatics; 2011 May; 27(9):1247-54. PubMed ID: 21422073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accessibility-incorporated method for accurate prediction of RNA-RNA interactions from sequence data.
    Kato Y; Mori T; Sato K; Maegawa S; Hosokawa H; Akutsu T
    Bioinformatics; 2017 Jan; 33(2):202-209. PubMed ID: 27663495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.