These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38780736)

  • 1. Developing Complex RNA Design Applications in the Infrared Framework.
    Yao HT; Ponty Y; Will S
    Methods Mol Biol; 2024; 2726():285-313. PubMed ID: 38780736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fixed-parameter tractable sampling for RNA design with multiple target structures.
    Hammer S; Wang W; Will S; Ponty Y
    BMC Bioinformatics; 2019 Apr; 20(1):209. PubMed ID: 31023239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial RNA design.
    Runge F; Franke J; Fertmann D; Backofen R; Hutter F
    Bioinformatics; 2024 Jun; 40(Suppl 1):i437-i445. PubMed ID: 38940170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frnakenstein: multiple target inverse RNA folding.
    Lyngsø RB; Anderson JW; Sizikova E; Badugu A; Hyland T; Hein J
    BMC Bioinformatics; 2012 Oct; 13():260. PubMed ID: 23043260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study.
    Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC
    Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A statistical sampling algorithm for RNA secondary structure prediction.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2003 Dec; 31(24):7280-301. PubMed ID: 14654704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding consensus stable local optimal structures for aligned RNA sequences and its application to discovering riboswitch elements.
    Li Y; Zhong C; Zhang S
    Int J Bioinform Res Appl; 2014; 10(4-5):498-518. PubMed ID: 24989865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico design of ligand triggered RNA switches.
    Findeiß S; Hammer S; Wolfinger MT; Kühnl F; Flamm C; Hofacker IL
    Methods; 2018 Jul; 143():90-101. PubMed ID: 29660485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared: a declarative tree decomposition-powered framework for bioinformatics.
    Yao HT; Marchand B; Berkemer SJ; Ponty Y; Will S
    Algorithms Mol Biol; 2024 Mar; 19(1):13. PubMed ID: 38493130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
    Weinberg Z; Nelson JW; Lünse CE; Sherlock ME; Breaker RR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2077-E2085. PubMed ID: 28265071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary structural entropy in RNA switch (Riboswitch) identification.
    Manzourolajdad A; Arnold J
    BMC Bioinformatics; 2015 Apr; 16():133. PubMed ID: 25928324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient approximations of RNA kinetics landscape using non-redundant sampling.
    Michálik J; Touzet H; Ponty Y
    Bioinformatics; 2017 Jul; 33(14):i283-i292. PubMed ID: 28882001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed.
    Fornace ME; Porubsky NJ; Pierce NA
    ACS Synth Biol; 2020 Oct; 9(10):2665-2678. PubMed ID: 32910644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the accuracy of direct-coupling analysis for RNA contact prediction.
    Cuturello F; Tiana G; Bussi G
    RNA; 2020 May; 26(5):637-647. PubMed ID: 32115426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rich RNA Structure Landscapes Revealed by Mutate-and-Map Analysis.
    Cordero P; Das R
    PLoS Comput Biol; 2015 Nov; 11(11):e1004473. PubMed ID: 26566145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the Quality of Cotranscriptional Folding Simulations.
    Kühnl F; Stadler PF; Findeiß S
    Methods Mol Biol; 2024; 2726():347-376. PubMed ID: 38780738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures.
    Scheid A; Nebel ME
    BMC Bioinformatics; 2012 Jul; 13():159. PubMed ID: 22776037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LocARNA 2.0: Versatile Simultaneous Alignment and Folding of RNAs.
    Will S
    Methods Mol Biol; 2024; 2726():235-254. PubMed ID: 38780734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design.
    Garcia-Martin JA; Clote P; Dotu I
    J Bioinform Comput Biol; 2013 Apr; 11(2):1350001. PubMed ID: 23600819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.