These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38780738)

  • 41. Pseudoknots in RNA folding landscapes.
    Kucharík M; Hofacker IL; Stadler PF; Qin J
    Bioinformatics; 2016 Jan; 32(2):187-94. PubMed ID: 26428288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing.
    Ender A; Stadler PF; Mörl M; Findeiß S
    Methods Mol Biol; 2022; 2518():179-202. PubMed ID: 35666446
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A transient intermediate RNA structure underlies the regulatory function of the
    Berman KE; Steans R; Hertz LM; Lucks JB
    RNA; 2023 Nov; 29(11):1658-1672. PubMed ID: 37419663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ
    Gong Z; Yang S; Dong X; Yang QF; Zhu YL; Xiao Y; Tang C
    J Mol Biol; 2020 Jul; 432(16):4523-4543. PubMed ID: 32522558
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of transcription regulating riboswitches.
    Findeiß S; Wachsmuth M; Mörl M; Stadler PF
    Methods Enzymol; 2015; 550():1-22. PubMed ID: 25605378
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of flanking regions on HDV cotranscriptional folding kinetics.
    Wang Y; Wang Z; Liu T; Gong S; Zhang W
    RNA; 2018 Sep; 24(9):1229-1240. PubMed ID: 29954950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D feasibility of 2D RNA-RNA interaction paths by stepwise folding simulations.
    Beckmann IK; Waldl M; Will S; Hofacker IL
    RNA; 2024 Jan; 30(2):113-123. PubMed ID: 38071473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model.
    Li C; Lv D; Zhang L; Yang F; Wang C; Su J; Zhang Y
    J Chem Phys; 2016 Jul; 145(1):014104. PubMed ID: 27394096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Approximating the set of local minima in partial RNA folding landscapes.
    Sahoo S; Albrecht AA
    Bioinformatics; 2012 Feb; 28(4):523-30. PubMed ID: 22210870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of pausing on the cotranscriptional folding kinetics of RNAs.
    Wang K; He Y; Shen Y; Wang Y; Xu X; Song X; Sun T
    Int J Biol Macromol; 2022 Nov; 221():1345-1355. PubMed ID: 36115451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.
    Lin JC; Thirumalai D
    J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring the modular nature of riboswitches and RNA thermometers.
    Roßmanith J; Narberhaus F
    Nucleic Acids Res; 2016 Jun; 44(11):5410-23. PubMed ID: 27060146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning a riboswitch response through structural extension of a pseudoknot.
    Soulière MF; Altman RB; Schwarz V; Haller A; Blanchard SC; Micura R
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):E3256-64. PubMed ID: 23940363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In silico design of ligand triggered RNA switches.
    Findeiß S; Hammer S; Wolfinger MT; Kühnl F; Flamm C; Hofacker IL
    Methods; 2018 Jul; 143():90-101. PubMed ID: 29660485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling of Three-Dimensional RNA Structures Using SimRNA.
    Wirecki TK; Nithin C; Mukherjee S; Bujnicki JM; Boniecki MJ
    Methods Mol Biol; 2020; 2165():103-125. PubMed ID: 32621221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mimicking Co-Transcriptional RNA Folding Using a Superhelicase.
    Hua B; Panja S; Wang Y; Woodson SA; Ha T
    J Am Chem Soc; 2018 Aug; 140(32):10067-10070. PubMed ID: 30063835
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A computational approach for the identification of distant homologs of bacterial riboswitches based on inverse RNA folding.
    Mukherjee S; Retwitzer MD; Hubbell SM; Meyer MM; Barash D
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36951499
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch.
    Polaski JT; Holmstrom ED; Nesbitt DJ; Batey RT
    Cell Rep; 2016 May; 15(5):1100-1110. PubMed ID: 27117410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.